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Introduction 

Although the earliest students of hydrodynamics '..ere strongly interested 

in such natural  phenomena as  fountains and water waves,  progress  in attaining 

a mathematical description of these  phenomena has been relatively slow. 

It vas not.   in fact,  until the nineteenth century that the  mathematical 

framework of hydrodynamics was established on a firm basis.    Since then, 

knowledge in this field has accumulated — along with that  in the other 

major sciences — at an accelerating rate.    Yet there remain —• as  in the 

other sciences — important questions that are still unanswered.    For example, 

we may ask what are the  precise shape and  velocity of a simple surface 

wave on the ocean?    Although these entities can be approximated to a high 

degree of accuracy, there exist as yet no  formulas which describe them exactly. 

The basic mathematical difficulty lies in the treatment of the free 

surface boundary of the  fluid.     In the usual problem involving a boundary, 

the boundary is not free, but is instead fixed and its  location is known. 

The customary approach to this  problem then involves the setting up of 

a mathematical expression which states  that the fluid must not pass through 

the boundary.    However,  in a hydrodynamical problem involving a free surface 

boundary, the character of the boundary value  problem assumes a special 

nature.    On the boundary — the  free surface — one  prescribes two conditions, 

namely, that the free surface is not violated by the fluid, and, further, 

that the  pressure is constant there.    However,  until we have solved the 

problem, we do not know the shape of the  free surface.    Thus we must solve 

a boundary value problem with an unknown boundary. 

Historically, the early investigations  of surface waves used linearization 

— a  technique in which, essentially,  the free surface is assumed to be 
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flat for the purpose of prescribing boundary conditions. As long as the 

waves arc very small, this approximation is justified. The next approach 

was to use the exact equations, but to neglect all terms of order higher 

than the second.  The applicability was thus extended to include larger waves. 

Outstanding among the contributions to the theory of waves of finite amplitude 

are those of Stokes [10] a:;d Hayleigh [8]. It is hardly necessary to go 

into the history of this theory, since excellent treatments can be found 

in readily available works such as Lamb [3]. A less technical treatment 

is given by Sverdrup, et al [11]. Rossby [9] has shown that the system of 

deep water waves of finite amplitude given by Stokes is only one of an infinite 

number of possible irrotational wave systems. Gernstner [2] dropped the 

requirement that the motion be irrotational and was able to obtain an exact 

solution to the remaining equations — those of continuity and constant 

surface pressure — which showed surface waves over deep water to have a 

trochoidal profile. His work will be mentioned again in Chapter II. 

In the exact theory for irrotational waves — the theory with which 

this paper is concerned — Levi-Civita [£] has shown that finite waves of 

permanent form do exist.  It might appear, especially to one who has 

witnessed the evidence, that an existence proof for ocean waves is unnecessary. 

However, this is not the case, for in reality it is only in the mathematical 

treatment that true permanent waves actually exist, we neglect viscosity 

and hence the frictional forces that in nature tend to cause a wave, in time, 

to lose its force. Thus in deviating slightly from physical reality, we 

make it necessary to prove the existence of a solution to our problem. The 

existence proof of Levi-Civita yielded a fair approximation to the shape 

of the T;ave. There has been some interest in the solitary wave problem also: 
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the question is whether or not a single wave of permanent form can exist 

on the ocean,   inasmuch as a sudden disturbance usually sets up a train of 

wavec instead of a single wave.    The question has been answered in the 

affirmative by Lavrentieff   [h],   but he did not gi.ve the   exact shape of the 

#/ wave-*      This problem io mentioned because of the fact that the methods of 

this paper could be applicable to  it. 

A fresh approach  to  free-surface problems in hydrodynamics has been 

made possible recently by the introduction of a new mathematical tool  [6]<~ 

This new procedure allows us  to  generate free-surface flows at will,   ana 

it forms the  fundamental concept upon which this paper is based.    The method 

is an extension to  the study of non-gravity flows of  classical investigations 

based on the theory of  functions of a complex variable.    As  is pointed out 

in most textbooks on the subject,   any analytic  function car. be interpreted 

as the solution to a two-dimensional hydrodynamicai flow problem.    Our 

analysis is  somewhat reversed from normal procedure,,  however, in that one 

must  first decide on a function,   and then determine what hydrodynamicai flow 

problem it solves.    Of course, more than pure  guesswork is involved.     Having 

a particular flow problem in mind,  one proceeds,   a;  ar. analytical detective, 

to -uncover certain clues which will enable him to choose the proper  function. 

In this paper, we thus  construct several examples  *f fr:a-surface flews using 

a  formula suggested by Hans Lewy   [6].    He found that whereas  iny analytic 

function represents a hydrodynamicai flow,   if we restrict the functional rela- 

tionship in a  certain way,  the flov.' then becomes a free-surface flow in a 

gravity field, 

As is often the case with mathematical investigations of physical 

*/ This  theorem has also been proved recently by Friedrichs and Hyers, 
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phenomena,  one must make some  plausib]-3 assumptions  in order to simplify 

the mathematics.     In this  paper we make  the usual assumptions concerning 

the  fluid,  namely, that it is  incompressible and is without viscosity. 

Farther,  our investigations will deal with phenomena which are re presentable 

•. 

in two dimensions,  and which can b<s generated from rest — that is, which 

are irrotational.    Bernoulli's 1^•-; r?ili be used  in its exact form. 

Now that our medium is defined we may state Lewy's discovery explicitly. 

He found that if  /.( ^)  is an arbitrary analytic  function of ^ which is real 

on the real  ^-axis,  then the mapping 

(i) ^•-^^'Jlrjtfr- -'S-4p? *<> 
represents a steady free-surface gravity flow in the z-plane, the free surface 

being the image of a segment of the real   ^-axis along which the inequality 

1   _     _  {*JLf > o 

holds.     In Chapter I, this relation will be developed in a manner different 

from that used by Lewy.    The existence of A for such a free-surface flow 

and the  proof ^f the analyticity of the free  surface will also be given. 

It should be  pointed out that this work was done by Lewy in a more general 

manner than that presented her<^.     It is hoped that the loss in generality 

is compensated for by a gain in simplicity. 

The major contribution of this  paper lies in the application    of Lewy's 

theory.    Up until +u.is time there have been no important free-surface flows 

in a gravity field represented in closed form.    The solutions have, in the 

past, been either approximations   (linearized theory)  or the  first few terms 

of an infinite series solution.    With Lewy's method one obtains a solution 
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which is  in closed form.    The major difficulty with the method lies  in trying 

to  pick the  few significant  functions /( ( 3)  ou^ °^ the  infinite number 

of possible  functions.     The  functions which will yield the solutions  to 

three outstanding problems  of surface waves remain as yet unknown.     These 

are the  problems of periodic waves  over a   flat bottom of finite depth, 

periodic waves over an ocean of  infinite depth,  and the solitary wave. 

It is hoped that this  paper will be of some aid in the  quest for the 

solutions to these  problems. 

In Chapter II an example of a  free-surface wave will be given.     It is 

of trochoidal profile and travels over a smooth, but not a flat,  bottom. 

Chapter III contains a  limiting case of the  flow of Chapter II   where the trochoid 

becomes a cycloid.     It is shown that when this occurs,  the character of the 

flow changes completely in that  the  periodic nature of the flow is destroyed. 

Some general properties of deep-water waves are studied  in Chapter IV with 

respect tc   their effect on the choice of the arbitrary function A ("S)« 

An example  of surface waves  growing out of these considerations  is given. 

In Chapter V we leave the realm of surface waves and examine two flows 

of a  non-periodic nature.    One is  a  fountain-like flow which yields many 

interpretations.     It is especially interesting because  it provides a fir3t 

example of how a stagnation point on the surface need not necessarily occur 

at an angle of 27T/3.    The second example might be interpreted as the skimming 

action of a vertical board being drawn rapidly along the surface of a deep 

body of fluid. 

It should be mentioned that the attack on the  problems of free-surface 

phenomena received impetus during the war because of its military importance, 

the major  interest centering around ocean waves.     In order to  prepare 
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adequatelv  for an amphibious assault,  one needed a means  of forecasting wind 

waves and swell.    A part of this study required a  knowledge of shapes and 

velocities of the waves when,  having been created by storm,  they moved on 

through the undisturbed sea.    A knowledge of the shape and velocity of ocean 

waves is also important to those making a study of ship stabilization, 

since the  forces on the hull of a ship at sea are dependent on them.    Under 

certain conditions,  one can see ocean waves quite clearly from the air. 

To the airman, the exact shape of the waves  is not too important, but the 

velocities   might well concern him.    A ship at sea forms directly behind 

it a  train of waves called the transverse wake  and these waves move with 

the same vel:~.ity as  the ship*    From the air one can measure  the wavelength 

of this transverse wake and consequently,  knowing the velocity of a wave 

as a  function of its wavelength,  one is able to determine the speed of 

the ship.    Also,  the knowledge of wavelength as a  function of velocity and 

depth can be applied  to  determine,  from aerial photographs,  the depth of 

a bay,  the slope of a beach,  and other geographical data. 

I would like to express my great appreciation for the help given by 

Professor Hans Lewy in my early work on the applications  of his theory. 

And,  of course,  the guidance and  inspiration received from ray adv:;^.)r 

Professor Paul Garabedian is without measure. 

• . 
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Giiaoter I 

As was mentioned in the  introduction, we are investigating steady, 

two-dimensional,  irrotational,  free-surface  flows of an  incompressible, 

inviscid fluid  in a  gravity  field.     From the  irrotationality, we know that 

there exists a velocity potential (p such  that the velocity,   q ,  is the 

gradient of (b .    For steady incompressible  flows the equation of 

continuity states  that the divergence  of   qis zero;  therefore U? satisfies 

Laplaces's  equation \/   (p = 0.    Finally,  the dynamical equations  yield 

Bernoxilli's  la*.,  which,   in our case, takes  the  form 

(2) 1/2   q     • gy • | = constant, 

—$> 
where   q , without the arrow,  is the magnitude of the velocity   q ,  g is the 

acceleration due to gravity,  y is the vertical coordinate  (positive upwards), 

P is  the  pressure at any poii.t of the  fluid.,  and j   is the density of the 

fluid.     If we introduce the  stH»m function  7 , we may describe a two- 

I dimensional flow by the complex potential 

^(z) -<p(z) • iyi»). 

Then 

where  q ..  and q_ are the x and y components of velocity, respectively, whence 

the bar denoting the complex conjugate. The above development is familiar 

from textbooks on hydrodynamics or complex variables and consequently we 
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omit further detail nere and proceed  to develop Lewy's  theory. 

Fnysicaily a  stream lire is a line across which no  fluid will flow — 

thus any stream line  is a possible boundary for the  flow.     If we want one 

of our stream lines to be a  free surface boundary, then  we must,  in addition, 

require that the  pressure be constant all along this stream line.    Conversely, 

if along some segment of a stream  line the pressure turns out to be constant, 

then it  is a  possible  free  surface.     For the best  physical example to 

•illustrate    this constant-pressure criterion,  we again turn to the ocean. 

The constant pressure along the free surface  is  ,iust equal to the atmospheric 

pressure of the air.,    Since the inertia of air is very small compared to 

that of water,   the surface of the water may easily displace the air and so 

is not impeded by the  air during a change in shape.     That  is to say, the 

surface is  free to change shape.    This is an important  factor in progessive • ——— 

waves,   for if they were required to do mtch work in displacing the air, they 

would soon lose their  force.    Of course,  the constant-pressure criterion is 

again a mathematical idealization,  for air does have its effect on surface 

waves, especially when the air is itself in motion.     Indeed, most ocean waves 

owe their existence to the forces created by air in rapid motion. 

In any flow represented by a complex potential,  a stream line is 

characterized as the  image of a line Im(j)  - constant.    One of the stream 

lines in the  z-plane is hence the image of ths line  Jm(^)  • 0, and it is 

this  line that wa will select  for the  free  surface.    "We now turn our attention 

entirely to this   free-surface stream line.     It may be that only part of the 

real   -f-axis will satisfy the free-surface criterion of constant pressure. 

At any rate, whether it be all or only a part of the    3 -axis that is the image 

of the free surface^ we will call it the free-surface segment of the real^-axis, 
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Along this  free-surface segment,  or,  more  properly,  along its  Image in the 

z-plaru,  the  pressure  P is constant.    Since the  fluid  is incompressible,  the 

density P is a  constant throughout the  fluid and, therefore,  in particular,  on 

the  free  surface.    We may,  therefore,write Bernoulli's  ]^w in the  form 
: 
: 
i 

i 

(3) 1/2  q2 • gy = -I   * constant, 
; 

where everything on the right-hand side is constant.    We are at liberty to 

choose the location of the  origin in the z-plane and can do so in such a way 

that the constant gk obtained from replacing y by some y* • k just cancels 

the  two constants on the right-hand side of equation  (3).   This means,  in 

particular,  that the zero-velocity level of the fluid coincides with the real 

z-axis when we  are on a free surface.    Notice that if we are not on a free 

surface,  there  is no reason to expect zero vslocity on tne real z-axis,  since 

then the  pressure  P is not necessarily constant.    A saving in effort is 

achieved if we  further set the acceleration of gravity equ 1 to 1.     Physically 

this means we are choosing our unit of length to be equal to approximately 

32  feet,  provided time is still measured in seconds.    Thus,  on the free surface, 

Bernoulli's  law takes  the simple  form 

(M 1/2 I P- 
2 

• y = Q 
dz 

This can be inverted and rewritten as 

i       ^ *•§**--• 
This equation is true only on the free surface, with dz and dj measured along 

the free surface. But the free surface is the image of Im(^) • 0, and 

therefore we may replace d"? by dtf, since both are equal to d (b  and are 
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real there.  Hence equation (5) becomes 

dz dz     1 
d?" dT   2y 

Since z - z" = 2iy, v:s have z = z - 2iy, so that 

dz    _ uz 2idy 
dT     d^ "d<»    » 

dy      _    dy wnere ^y-    =   ^»— has meaning,  since the free surface can be represented ay      dp 
parametrically in the form z « z(fo) = x((p)  *  iy((b). We note that from 

equation (U), the inversion z • z( \) is always possible if the free surface 

is bounded away from the real z-axis.  If we let a prime ' designate differentia- 

tion with respect to L,  we have finally 

(6) z' (z' - 2iy<) •A- = 0 . 
2y 

Vtfe now come to the essence of Lewy's idea. Equation (6) is an equation, 

involving a real quantity y, that must hold on the free surface. But 

suppose we consider it as an equation in the complex domain involving a 

complex function y. Then its solution would be an analytic function 

(under proper restrictions) and hence would represent a hydrodynamical flow. 

If this complex quantity became real along the stream line Im( "O » 0, then 

by virtue of the derivation of equation (6), that stream line would be a 

free stream line. To accomplish this, we replace -y oy an analytic function 

of "S, A ( L), which is real and positive along some segment of the real 

"^-axiSi  If we insert this function into equation (6) we have 

(?) «' («• •2i/}«) - s^r- -0 . 

Since A (~\)  is analytic, equation  (7)  is a non-linear differential equation 
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which connects  z with  k in an analytic way.    Consequently, it determines a 

hydrodynamical  flow0    Furthermore,  the  image of a segment of the real"C-axis 

is a  stream line along which   pronsure is constant by virtue  of the derivation 

of equation  (7),   provided A = -y on the stream line — a  fact we establish 

immediately.     Hence this  stream line is a  free-surface stream line. 

The differential equation  (7) may be solved for z in terms of an integral, 

; 

(8) * --i/l • \)-£. A'2    df . 
\j     • — 

It is  clear from this equation that A (j)  is equal to -y on the  free 

surface,  provided the integral itself is real on the  free surface. 

Consequently^we must require 

(?) -|T" " ^,2-° 
along the free-surface segment. We call this the free-surface condition. 

We now have a method of constructing free-surface flows. Using 

equation (8) we may generate a free-surface flow by inserting any function 

/( ("s ) which is 1) analytic, 2) greater than zero (hence real) on some 

segment of the real "\-axis, and 3) such that 1/2/\ > A.1     on this segment. 

Recall that in the classical theory, the arbitrary analytic function itself 

determines the flow, whereas here the arbitrary analytic function appears 

as a parameter and as a consequence exerts a more indirect influence on the 

resulting flow. 

It is also possible to make a converse statement. For any free-surface 

flow, there exists a unique function A( j) which will generate the flow in 

the above sense. Furthermore, any free-surface flow may be continued across 

the free surface and as a consequence, the free surface must be an analytic 



-12- 

i 

i 

i 

curve.  Before going ahead with the proof of these statements, we will 

demonstrate the necessary existense and uniqueness theorems for first-order 

ordinary differential equations in the complex domain. 

The existence and uniqueness theorems needed here differ slightly from 

those usually given in the textbooks. Often the initial values are taken 

a. the centers of the domains under consideration. We will need to assign 

an initial value to the independent variable which is on the boundary of the 

domain. Further, the usual proof just shows that the solution exists and 

is analytic within the domain under consideration, Vfe will need both existence 

and uniqueness on the boundary of  the domain, and we will prove that the 

solution is also continuous on the boundary. 

Consider the differential equation 

(10) 
d^ «s,A) 

together with the following domains. Let D1 be an open circular region of 

the ^?-plane of radius r and center /?Q. Let D2 be an open simply-connected 

region of the ^-plane which may be of any configuration, provided that any 

two points belonging to D2 can be joined by a path of finite length contained 

in the closure of T>2>    Choose the radius r of ^  and the domain Dg so that 

f(/}»"0 is regular and single valued for both variables ranging within 

their respective domains, is continuous in both variables within and on the 

boundaries of these domains, and satisfies the Lipshitz condition 

for A     and /L within or on the boundary of Di and ^belonging to the closure 

of D . Further, let M be the maximum value of f (~f, /() for y and A belonging 
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to the closures of their respective domains.  The existence of the maximum 

is assured by the continuity of the function f( ~€,A)-    Now le" Jo belonS 

to the closure of the domain DQ, where we specifically allow values on the 

boundary of D_.  If we denote the greatest length of path necessary-' to join 

K    to any point "^ that belongs to the closure of D2 by S, and if S < ^ 
r 

then we may proceed with the analysis.  If, however, S > ^,then we alter D,, 
• 

by removing those parts farthest away (by path)   from^   until the inequality 

S < Ti holds,    Call this altered domain the domain D, and set D » D0 when 
M « 

no alterations are necessary. Then the differential equation (10) admits 

a unique solution A (j>) with /  • A ( j  ) which is analytic within D and 

continuous in the closure of D. 

Suppose for a moment that a solution to the differential equation is known 

*) -P      -fi 
which has as initial value /i    for S • Jj . This solution mould satisfy the 

* o o 

relation f 

AC$) - ?0 • L f(t, ^(t))dt. 

T 

If the  function A (\)  is unknown,  then this relation becomes an integral 

equation which may be solved by the method of successive approximations  in 

the following manner. 

Consider the sequence of functions 

— Although it is not really necessary, we will assume for sake of clarity 
that a geodesic exists  for all pairs of points belonging to the  closure of 
D„,    We say geodesic  (path of shortest length)  because it is  possible that 

two points could not be joined by a straight line lying in the closure of 
the domain Dp.     In that c-^e  parts of the boundary must be used together 

with straignt-line segments. 
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where each of the integrals is a line integral from 3 to some point "\  in 

D along a path each point of which belongs to the closure of D. Since A o 

is a  constant within D.. ,   f(t, A )  is  a regular,  single-7alued  function of t • 1* o 

for t within D, and is  continuous in the closed domain D.     3y Cauchy's  integral 
- 

theorem the value of A i   is  independent  of the  path of integration and, 

further,  by Morera's theorem, /\,   is regular and single  valued within D.     The 

I continuity of /i^   for all *s belonging to the closure of D follows  from the 
l 

fact that it is an integral. Note that the path cf integration may include part 

of the boundary of D, for Cauchy's theorem requires only analyticity within 

the contour and continuity on the contour. The endpoint *£ may be on the boundary, 

and the value of A.  on the boundary is quite independent of our path; that 

is, we may reach this boundary point by integration along part of the boundary 

or by approaching it from within D. 

Turning our attention to /(p, we see that we will be able to attribute 

the same properties to /l? as we have to /{.  as soon as we have shown f(t, A-.) 

to be regular and single valued within D and continuous for 3 belonging to 

the closure of D. To do this we must first show that /(, is within D... Now 

"*" W^Tl W,T^.W,,. ;   <_*, 
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where the value on the left is independent of the path of integration. Consequently* 

for purposes of obtaining a  good estimate, we may choose the geodesic joining 

3 to J3 as our path oi' integration, 

< M 
'J 

X 
dt 

dt 

<MS 

T" 
But by construction. S < r.    so that 

and /*,   is  in D,.    We kno^ that f(   \.A)  is regular,  continuous,  and single 

valued in its second argument,   provided the  second argument is within D, . 

BUt /{->   is within D..;  consequently, f (j , /r,)  i-s a regular single-valued 

function of 3 within D and is continuous in the closure of the domain D. 

From this we may conclude that /[ _ is a  regular single-valued function of 

$  within D and a continuous  function of Swithin and on the boundary of D. 

Suppose now that /T    ,  is within D^   and is  a regular,  single-valued functic 

of 3 within D,  and is  continuous  in the  closure of D.    Then 

K- • A, ; ^'Jn-J dt 

< MS < T, 

so that A.    a]so is within D. .    Further, 
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A    is so that  /I     is  also regular and single valued within D and continuous  in the 

closure of D„     Thus the induction is established. 
n 

We now show that these  /\    converge uniformly anrf absolutely to a limit 
' n 

function A (3).  In the remainder of this proof we will always agree to take 

the geodesic path when integrating to a point -J .  It is clear that 

S 4-4-<J 

< M 

~0 

t 
1 

f(t,/L) dt 

ds • Ms 

f 

where s  is the distance from  "5    to 5 along the geodesic path.    Notice that 

s    is a  function of 3 and is not to be confused with S, which is a constant. 

If D is convex,  then s  «!_)  -   J$ j •     Now 

dt 

. r 

and upon applying the Lipshitz condition we have 

dt 

But we have just shown that 

\-\ 

V4 
pi 

< Ms,  so 

MK \      s ds - MK |y    . 

Suppose now that 

^n-1 "   \-2 <MKn~2    s 
n-1 

Cn^iT; 
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5. 

KL  ^n-l-^n-2 dt 

dt 

<MK"-1 ,\U r s"-1 ds - MK"-1 4 
-      vn-l)l ,J „ nl 

1 

' 

!• 

We may now replace s by S sc that we have a uniform bound for the absolute 

values of the differences A    -  n    i• Consequently the sum 

\ • g" fa) - ?S.^J , 
by the Weierstrass M-test, converges absolutely and uniformly in the closure 

of the domain D, Therefore,/? —*'2C$)  and ^(5 ) is regular and single valued 

within D and continuous within and on the boundary of D, because a uniformly 

convergent sequence of continuous or regular functions converge to a continuous 

or regular function. 

Consider the equation 

d 
?Dd) - ?0 * \    t(t, ^n_1ct))dt. 

4 
If w"« take the limit as n—*ro of both sides we obtain 

i 
n—> oo n—»oo X 
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This last  step is legitimate by virtue of the uniform convergence of the 

functions  n   . n 
If we consider the Lipshitz condition 

*c?,/L> -*cf,^> <K^- /I. n ' 

we see that the functions f(3, A  )> *( J » 'O» *"(-J >/O ••• form a uniformly 

convergent .sequence of regular single-valued functions within D, continuous 

in the closure of D, Consequently f(3,/\), the limit function, is also 

regular and single valued within I» and continuous in the closure of D. Under 

these conditions we may differentiate the indefinite integral (11) to obtain 

U- -«A.S). -.) 

!<< Thus A (5)  satisfies  the differential equation and from (11)   it  is clear that 

Finally, we  prove the uniqueness of /I .     Let-*J-("^)  be  a functior which 

assumes  the value  A    at   "3   and which satisfies  equation  (10),   and hence o o 

equation (11).    Suppose that -/\is regular,  single valued,  and continuous 

in a connected domain D» which includes those regions of D in which the 

inequality 

S^-?     <r o 

holds. At least a small region of D near 3 is included by reasons of 

[ 
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contirraity.     If 3 is no* restricted to D», we have 

-o 

whence 

A-/)|< f   |f(t,A) -f(t, A) 
X 

dt 

^o .4 A 
J1 

dt 

< Kr \       ds - Krs, 

-> o 

fei 

where s has the same meaning as before.     But again 

I     .      ^1        /)J| 
jyi-/i|f J   jf(t,A) -f(t,^) 

—>r\ 

dt  , 

0 •J 

-KJ A-t dt 

We may now use the estimate above to obtain 

^-/>|<K2rJ" tf 
s ds « K r 

*o 

2l 

It is quite clear that the  induction can be established so that we obtain, 

finally, 
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A-2 
n 0n . ,.n      a . T,n      S < K    r —r < K    r —T ns —               n; 

But the left-hand side  is  independent of nj     consequently, A." A in D#. 

But  if /\ • /\ in D#,then necessarily /\ = /\in B.     This completes  the  proof. 

We now have the equipment to  prove that a unique  function A (j)  exists 

*/ for any  free-surface  flow,  and that  the  free surface is an analytic curve-r 

Our basic tool is the differential equation  (7).    We consider as  given a complex 

potential "5 (z)   = 0 • ir which represents a free-surface  flow,  namely, 

which is analytic in some region of the z-plane bounded by an arc lying in 

the lover half-plane whose  image  is  a segment of the real j -axis.    Along 

this segment we assume that the equation 

1/2 dz |     • y - 0 

holdso     This  Is  tantamount to saying  -hat the  pressure is constant along the 

arc.    This exceptional arc will be called, and is5  the free surface. 

For the  proof,  it suffices to consider a small arc of free surface which 

is bounded in depth and which is bounded away from the real z-axis.     That 

is  to say,  on this  free-surface segment, M > y > £ > 0.     It is then clear 

from Bernoulli's law that z*  = -73-   is also bounded and bounded away from 

dz 
zero.    We will further assume that z'   is  continuous on the  free surface. 

This means that the free surface must,  in particular,  have a continuously 

turning tangent.     It  is given that z'   is analytic within some semi-neighborhood 

•/ — The method used in proving this theorem has been presented in more generality 
by Lewy in A theory of terminals  and the reflection laws of partial differential 
equations,  Technical~Eepcr'   Ho.  I4",   Contract Nonr-225(ll) (KR-OI4I-O86) /"Office' of 
Naval Research, Applied Mathematics and Statistics Laboratory, Stanford Uni- 
versity.  California, Aug.  8_,   iy5<?» 

•-     •...-•••• 
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i 

of the free stir face. 

We   first find the /(function that goes with this floff.    Equation (7), 

(7)                                                                         «l     f<rl    t   9i       /JO    .          .-              n   f) 

r 
may be considered as a differential equation for an unknown /{("£) with Known 

z'.    Solving  for   ({ '•  we have 

r 

(12) A     d^ ~2i     "^^rJ - »'). 

For  initial values, we will take a  point on the free  surface..     Let // "V 
?fhere y is the imaginary part of a point z on the free surface which is the 

image of j » The region D,, is some lower semi- neighborhood of the image of 

single valued.  It is clear that all the hypotheses about the function 

f("j •> A) = —pT ( g i n— - z') are satisfied if we take for D.. any circle 

which excludes the origin of the /i -plane and for D~ some lower semi-naighborhood 

of the real j-axis *here, by reason of continuity, z' remains bounded 

away frcm zero and infinity as it is on ths free -surface segment. Thus 

there exists a unique function ,i(~*>)  which satisfies equation (12) and 

attains the value - y at -\  » 

To see that this A (s>)  becomes -y all along the fr8e-surface segment 

included in D and not just at the  point z   , we use the uniqueness of the 

solution.     It suffices to show that -y is a solution to equation  (7)  along 

the    free-surface segment„    Consider Bernoulli's  law in the  form 

^1    <*L    • J-    - o    . 

Since we are only interested  in staying on the  free surface, dj   = d Q> j 

j 



hones d-^   ~ d j5  ,  and we may replace —^-    by T-^T .     Further,  z-z • 2iy,  and 
d £ _> 

on the free surf-ice we have assumed that the real and imaginary parts of z 

(now functions of the real variable (D alone)  have continuous  derivatives,  so 

that 7'   • z'   - 2iy'  has meaning, where  prime designates -J-^- •  n~ .     Thus 

Bernoulli's  law takes the  form 

z'   (z«   - 2iy«)   • ~-    = 0  , 

which,  upon replacing y by -y,  is  just equation  (7).    This verifies that -y 

is a solution of equation (7) and therefore that /\ (3)  ar*d ~Y coincide on 

the free surface*     Incidentally,  this shows that   ^(3)   is independent of the 

starting point z   . 

As a function of *£t /T is  real on the real 3 -axis  and hence can be 

continued into the upper half-plane by Schwarz's reflection principle.    This 

defines /{(^) as an analytic function above and,  in particular,  on the real 

^-axis.    We then return to equation  (7)  and consider it as a differential 

equation in an unknown z(-f)  and a known /i (_j)    above the  free surface. 

As such it is solvable in the  form of equation (8), which thus serves to deter- 

mine z above the  free surface.    Because this new z(j^)  defined above the 

free surface agrees along the free surface with the original z(-^)  of the  flow, 

it is, b;~ definition,  the analytic continuation of the original z("£ ).    But 

z(^), being an analytic  function, determines a hydrod^Tiamical flow, 

Consequently, we have extended the  flow across the free surface boundary. 

The continued function /i ("5)  is analytic on the  free-surface segment, so 

by Morera's theorem and equation  (8),  z(^)  is also analytic on the free 

surface..    Since the  free surface  is the image of Im(^)  = 0,  it is represented 

in an analytic way by 

z - z((f>)  « x(fc)  • iy(p)   , 
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and is hence an analytic curve„ 

This proof breaks down completely if we allow the free surface to reach 

the line y « 0? that if*, if we allow a stagnation point to occur on the 

surface, for then A • 0 and the Lipshitz condition cannot be satisfied. As 

27T 
Stokes pointed out, the free surface may then have a cusp of angle —i— at 

this point. This can be seen as follows:  Let the point in question be the 

origin in the $-, n. ->  and z-planes. If the slope of the free surface near 

the stagnation poim, is bounded away from zero and infinity, then x and y 

will be of the same order there. Consequently, ?,  will be of the same order 

as /{,  that is, 

z -S    \(^)  and/?-^ k2(^) , 

where R.. and R? are regular and bounded away from zero in the partial 

neighborhood of the origin within the region of flow. For the differential 

equation (7) to be satisfied, the order of the first term must be the same 

as the order of the last.  If we substitute the values of z and A given 

abovs, we obtain 

where R-,, Ri « and R^ have the same properties as R. and R_.  The order of 

the first term is thus 2d- -2 and the last term has the order -cA. Consequently, 

we require 2^-2 * -ct,  or<*= 2/3. 

This Is not a necessary condition for surface stagnation, for if we 

*•*) allow x and y to be of different orders, we may have no cusp at all. An 

example of this latter case will be given in Chapter V. 

: 
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Chapter IT 

ri 

i - 

In this chapter we develop a representation for the  flow under a  free 

surface.,  the shape of which is a trochoid  (curtate cycloid)-/   This  particular 

example is  of interest because it is related to an early attempt to find the 

exact equations  for ocean waves.     The original investigation was due to 

Gerstner  [2]  and was later duplicated  independently by Rankine   [7j.     The 

main difficulty here was  that these waves were rotational. 

If one attempts to solve the exact equation of the classical ocean-wave 

problem,  keeping only terms up to the  second order,  then one is led to the 

trochoidal surface.     (Terms of the  first order yield a sinusoidal surface.) 

These investigations are due mainly to Stokes   [10] and Rayleigh [8], 

The approach we will take here will be from the opposite point of view 

with respect to the classical theory.     Instead of specifying that the bottom 

is flat and then searching for the surface, we will specify that the surface 

is a trochoid and find out what kind of bottom will causs this.     It is known 

that the trochoid does not represent the true ocean wave form.     (This  chapter 

shows thiSo)    SOj we will answer the question,  "What type of flow does  produce 

the trochoid as a free surface in the  exact irrotational tneory?'* 

It is  perhaps helpful to have a possible  physical application in mind 

as "ve develop the theory.    One could imagine an infinitely long washboard 

with a sheet of water  flowing along it at a  fixed velocity.     The theory might 

apply to the flow of water in a »-!ver if it were sufficiently straight cf 

—/Fritz  John discovered this flow,  independently, using a method similar to 
that of this  paper.    His general method, however, treats unsteady flows and 
this example was  a special case where the  flow was made steady.     John,  Fritz 
"Two Dimensional Potential Flows with a Free Boundary,w Communications on 
Pure and Applied Mathematics t Vol.  VI  (1953)  pp.  h97-50,\ 
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course^ uniform in width and of proper speedy depth, and bottom shape. 

However,, the main practical value of this theory is its possible ap- 

plication tc the study of ocean waves of great length and small height, 

such as those caused by underwater seismic disturbances. As is shown, the 

roughnr-is of the bottom becomes infinitesimal with respect to the roughness 

of the surface if the ratio of wave height to wave length is sufficiently 

small. The flow of this chapter is useful more as an indication of how small 

this ratio must be in order to have the existing formulas apply than as a 

direct source of expressions useful in calculating the velocity of these 

waves, for velocity expressions have existed for some time (Stokes) which 

yield good results for waves of small w?re height to wave length ratio. 

This chapter is also theoretically valuable, since it gives an estimation 

of how well the trcchoidai curve approximates the profile of ocean waves. 

The approach used here does not require the determination of a function 

A(C^» ^ut ^s a direct procedure whereby we continue the flow away from the 

given free surface. Recall that in the existence proof we assumed that a 

flow was given together with its free sirface, A consequence was that the 

free surface was analytic-.    Now it is known that an analytic function is com- 

pletely determined if it is knovirn alon~ a curve. Thus actually th* '>rly part 

of a flow that needs to be given is the free surface itself, for then by means 

of this tneory we are able to extend the flow under this free surface. 

There are several metnocs applicable to this problem of continuation; 

however-; they are all variations of the L'cllowing idea. Since the t'xee 

surface is analytic, it can be described by an analytic function y = f(>•). 

But x = z - iy, so that from y • f(z - iy) we can solve for y to obtain y 
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d3 *2 
as a function of z, y • g(z)„ If we multiply equation (7) by (r-) ws obtain 

1    2i "dT   ~ TJ~   (dT}        ° ' 

whence 

Rsplacing /i by -g(z) we can solve this differential equation for ~> -   ~>(z), 

which is the  required flow function.   Incidentally, if we invert D •  -?(z) to 

obtain z = z("5)>  then /.(~£)  * - g(z(<)).     In general,  to get  from the 

free surface to the actual flow,  one inversion and one quadrature are 

necessary. 

The usual representation of a  trochoid of fixed wave length 2 if , wave 

height b,  and  of variable total depression c takes the form 

*-! x • - 0 • b sin 9  , 

y   m   _   c   •   b   COS   9    , 

where we require c > b > 0.    The condition c > 0 follows  from the requirement 

that the free surface lies below the x-sxis,  that  is, A (~S) > 0 for -^real. 

The definition of a trochoid requires c > b.    The limiting case c  • b = 1 

will be  treated in the next chapter. 

Thus., on the  free  surface  we must have 

where,  in particular. 

We note first that 

z - - 9 • b sin 9 • i  (-c • b cos 9)   , 

A" -(-c  • b cob 9)   . 

I 
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- (   ( /{ -c • 1) dO - I   (-1 • b cos ©) d© « -0 • b sin © - x, 

so that if we are to have 

7T 
• 

on the free surface, ire must have 

•S ^rT17 * -fa -c • i) de . 

We may use this relation to determine what 5 « 5 (©) must be in order to 

yield the trochoidal free surface.    To do thi3, we first differentiate the 

equation with respect to 0, obtaining 

or,  squaring, 

(-g^-   -   ^'2)     (||-)2    "  A* - 2(c-l) ^ • (c-1)2 . 

Upon replacing   fr by ^-£-   on the left-hand side, we have 
j 

^_ <«£,* . (Sg-)* - A2 -2(0-1) ^ • (c-1)2 , 

or 

;^)2   - 2^ {^ - 2(0-1);» • (c-1)2 «(^-)2j  . 

We now insert for A the free-surface function c - b cos ©. After reduction 

(the third degree terms drop out by virtue of the Pythagorian indentity) we have 

(|g£)2 - (2c-2b cos 0) (b2 • 1 -2b cos 9). 
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In general,  this yields a composite elliptic integral for 5 .     However,  if 

2 •/ we choose 2c • b    • 1,  the right-hand side becomes a  perfect square and o 
2 

we choose 2c » b 

is given by the elementary integral 

r    o 
• 1 - 2b cos 9) d9 . i.._j« 

This special choice of c corresponds to a choice of the velocity of flow along 

our washboard.  It is quite natural to expect some value of c to be favored, 

since we have already fixed the wave length* That this particular value of 

c is the "best" must remain a point of speculation.  The numerical work of 
p 

tracing stream lines in the case of 2c f b • 1 becomes unmanageable. 
2 

Rough calculations gave a strong indication, however, that the value c •  =— 

actually did yield a smoother bottom than other values. 

In order to have lm(~$)   < 0 correspond to the flow region, we choose 

the negative sign for the integral and obtain, finally, the parametric 

representation for the flow, 

5- - (b2 • 1) 0 • 2b sin © , 
1 

b2 • 1 
- 0 • b sin 0 • i ( «-= • b cos 6 

The expression for the  velocity is  particularly simple  for this  flow. 

We have 

dj 
dz 

d^             ? 
cRT _ 2 b cos 9 - (b • 1) 
dz    -1 + b cos Q - i sir. 9 
de 

_b-b(e   • e  ) • 1 _ ,  . i© 
-iO                 » ] - be 1W 
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whence, since the velocity is the complex conjugate, we have 

-19 
velocity = a, * i q. = 1 -be 

Since a  flow must be represented by a  single-valued analytic  function 

~£ -  S(z), we can expect trouble in the above  flow at points where ^?    is 

zero.    This occurs when 

be        * 1 , 

or,  letting 9 • £ • i Y) , when 

e '   (cos / - i sin^")   • r- . 

Since   b   is  a  positive real number,  we require  £ * ?nTT ,  and the trouble 

spots are hence the points 

9 = 2nTT • i 1Q,T 1   . 

It can be shown that the flow occurs over a multi-ohe.-ted Hier»ann surface 

below these points. This is indeed unfortunate, for the velocity expression 

indicates that the bottom gets smoother as we go deeper-. However, if we 

are to remain in the realm of physically possible flows, we must stay above 

the images of these points. 

The actual picture of the flow can be made quite easily. \1e first 

pick a value for b, where 2b is the wave height. As an illustration we 

will use 2b •   . The equations become 

Smi e * -h 3in e > 
i 9 1 
rzr-    sin 9 • i   (-^4 • —^ cos 9 )   . 

2f2" 16      2i2 



I -30- 

i 

The free surface,   Im(^ )  " 0,  is  obtained by taking Im(©)  • 0 or 0 real. 

The parametric equations, 

x - - © • sin © , 

9 1 
y - -15-   • -~p=- cos  e » 

then describe the fr«e surfacs.    A set of values appears  in Table 1.    The 

corresponding curve is shown in Figure 1 en  page  31.     To  find the stream 

lines below this  free surf ace, we seek values  of Q * £  * i h  w^^-cn ""ill 

keep the  imaginary part  of ~j a negative constant.    YTe have 

<- -I    {Z+iYl)+-L=r    Sin(|*i>7) 
8 ' I ^2 / 

9 t "1 - - | 5 * sin ^  cosh ,vy - i(£ ?j - —^   cos £ sinh^/ )  ; 
'J 2 

consequently pairs  ( £ , 79 )  must be  found such that 

9 "" >• •n-77 -    -i- cos £  sinh?;  - k . V   yr     5     / 
We may pick for k successive values only up to k • .29>,  for we may not go 

beyond 9 - 2nTT • i   log -i ,, whence 

k < Z    log 2 {2 - -i-    sinh log 2 </T'ar .295  . 

In Table  2, we compute several  pairs ( P.   , h)   for k •  .25 and  fhs resulting 

"bottom" is shown in Figure 1, 

In this particular example of the wave motion, the "bottom" i? rather 

shallow and quite wavy, hence, not very useful in the study of ocean waves. 

However, by reducing the wave height, we get not only an increase in depth -• 
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Figure 1 

The trochoidal free surface and one stream line. 

.05 units above the lowest possible stream line. 
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Bottom roughness and maximum depth az a function of wave heigh? 
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that is,the singularity in the flow moves down — but  percentagewise, we 

get a greater smoothirgin  the bottom.     To compare the depth of singularity 

and smoothness of bottom  for various  values of wave height,  b, we use the 

relations developed above with the  special values g •» 0,'"> = 7^   » -log b for 

the crest of the bottom curve,  and %mTf,'fi• y~   (where fl„ ±3 the value of ?1 

which yields the same imaginary value for _/  as   ''/).  m -lop b)   for the  trough 

of    the bottom curve.     The quantity   i. e /     •   %, • 1 -   /J    is  then the 

"wave  height" of the bottom curve.    Of course,  2b is the height of tne surface 

wave and 

2  . , Y)7 .2 (^     - b    • 1  . .    /2y       ,b    * 1     . , . ( 7J2 *  Y~ • be      ) - ( g-    • b) 

is  the distance from trough of the surface wave to trough of bottom curve, 

this being what we take   for 'une depth.     It   is, of coarse,  not the usual 

definition of depth, but is,  we   think,  a useful one  for this type of flow. 

A table of values of these   quantities,  together with wave height to wave 

length ratio and percentage smoothing,  is found in Table  3 for values of 

wave height ranging from  .8 to  „05,  the wave length being fixed at 2 7/.    A 

composite graph,  Figure 2, displays  some of this   information.    Of major interest 

is the velocity of propagation of these waves.    Since in th?; treatment the 

coordinate system moves with the wave crests, we rust look for the mean 

velocity of the water past the observer.    Recall that 

q • velocity • q,  • i q. ' l-be~ 

Thus,  the absolute value  of the velocity along the  fres surface  is 

(qq)1'2    - 1 l-2>   -os 8t b'      (fcr 9 real)   . 

The velocity at the crest is  horizontal and of magnitude 1 - b,  and the 
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velocity at the trough is also horizontal and of magnitude 1 • b. The mean 

velocity along the free surface is 

i a    ds 

I* 
where q. is the tangential velocity, here the velocity itself, since the 

free surface is a boundary_ and c is some length of arc representing a 

complete cycle. Sine? our wave is symmetric, we may use a half-^ave 

length.  Hecall that on the free surface 

x - 9 • b sin 9 

y = - b *  X * b ccs 9 , 

V 

L 

2 

q=l- e"ie • 1 - e"18 (for 6 real) 

= 1 - b ccs 9 * ib sin 9 =• q1 • iq,, . 

I 
I Hence,     „ -^ 

I  qx dx • q^ dy  _ / f(l  _ fc QQS Q)2  + fe2 sin2 Q J dQ 

I v\ n     i—s s—   f TT/- i o o  ") V2 

/, 

TT    2 
(1 t b - 2b cos 9) d9 

I 
o 

W 2 ^  
(i t b - 2b cos 9)   d9 

2 
The numerator can be integrated and yields the value - 7T( 1 t  b )• The de- 

nominator is an elliptic integral and, through the substitution 9 = TT - 2 y , 

takes the form 



2(l*b) 

~3h- 

\        >  i_ _J*    Sin
2^ d^ - 2(l*b) E (IQ)     . 

Jo      (l*b)Z 

Thus if MIS  take the negative square root in this integral so that the signs 

will cone out. right, we find that the mean velocity of the fluid on the free 

surface is 

Recall that b is the amplitude of the wave, 2b is the wave height. It should 

be pointed out that if we wish to interpret this flow as a progessive wave, 

we must make the wavy bottom move right along with the surface. Consequently, 

it -is better to think of this flow as a river flowing over an undulating 

bottom. If the bottom of a surface-wave flow is flat or infinite in depth, 

then it is immaterial whether we consider the waves as fixed and  the water 

in motion, or the water fixed and the waves in motion. Thus if we wish to 

compare the flow of this chapter with classical ocean waves, it is bast to 

think of the ocean waves as progressing up a river which is flowing at the 

velocity of propagation of the waves. The bottom of the river must be flat 

and the river must be quite deep. It is of interest to compare velocities 

obtained from the various existing formulas with those obtained from equation 

(13). We consider these formulas for fixed wave length 277 and for g * 1. 

The quantity b is the amplitude of the wave, and the depth is assumed to be 

great with respect to the wave length in each case. From the linearized 

A, _  J.I__ . I.-JI... _<• __„ ~~ ~n* A ,->»> -io   -ir>^»n»nH«»n+. of flmnl i t.nd« and is equal 

to one. Stokes' first approximation (yielding trochoidal waves) gave the 

velocity as (1+b2)1/2, and his second approximation, carrying terms up to the 
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2  5 h  i/:? fourth crder, produced the relation (1 * b * j- b )   for the velocity. 

These latter expressions are compared in the accompanying table with values 

of a    from equation (13) for various wave amplitudes. 

b .or; .1 • 2 • 3 .h .5 .6 .7 
I 

i   .8 
I 

2 1/Z 

(l*b2) 1.3013 1.005 1.020 l.Oiit 1.077    1.12 1.17 1.22 u 
(l*b4   i- £ K4) a 1.0013 1.005 1.021 l.Oli? 1.0? 2 1.15 1.3)> 1.17 

%> x.CO? 1.006 1.011 3.066 1.115 1.18 1.25 1. ^ 2 1 JiO 

: 

The correspondence in velocities is quite remarkable.     Fcr lurge  values 

of b,  however,  the flow of this chapter cannct even be remotely compared 

with deerj-water surface waves,   sir.^s the 1-rttcm  L:.  very wavy ar.d cr.lv z  7?rv 

short distance below the surface. 

The results c.f this chapter wcjld ssem to indicate that either there is 

a remarkable similarity between flows ever a washboard and decp-o-,-3'<r. wav&c, 

or the approximations used fcr >osan waves of relatively lar^e anplitnde ars 

no'   as accurate as supposed. 
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Chapt«sr III 

Although the flow described in this chapter car. be obtained directly 

from the example of Chapter II, we will develop it in all detail in order to 

illustrate a different method of attack. When one inserts a particular function 

/{ ( j) into the expression (8), he is often confronted by a highly complicated 

integral.  In order to force this integral to be of a simple type, one could 

set the integrand eoual to an elementary function.  In this chapter we will 

set the integrand equal to unity. 

We obtain, then, by equation (8), the 3ystem of equations 

(IM TJ- - y -1, 

(15) z * - ±/\  • ( d* - - iA   *S . 

Here /I serves as a parameter to connect z and   L .   We  notice that on the 

free  surface, x is equal to J5.    One could set the  integrand in equation  (3) 

equal to any function of /{or ~5 ,  provided the conditions stated in Chapter I 

are satisfied,  namely,  that the resulting expression obtained by solving the 

differential equation for /\ is analytic in j,  positive on some seg^snt of the 

real j -axis, and satisfies  the inequality 0 j»      - /\ '•    > 0 on this segment. 

If we solve the differential equation  (lU)   for 3> we obtain 

(16) K   - f —±-<2    . 
-   j rr~:T 

Equation (13>) can then be written 

(17) z.l^S—jJL 

15^ 
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It can be seen from equation  (16) that if A is restricted to the interval 

0 < /{ < 1/2s ^ is  real and varies between two values whose difference is   lf/h. 

Thus this  portion of    the real "$ -axis will correspond to the free surface.. 

Equation (lU) assures us that -^m /?*    > 0 on the  free-surface segment. 

Analyticity  is obvious. 

The  integral (16)  nay be  evaluated by neans of the substitution 

/, - 1/2 cos' 9.    We obtain 

< ( 2. .. Q      sin 29 J« -   1   cos  G d9 = - •* -  r  , 
1 U 

and from (17), 

.. /„        2 rt     9      sin 29 z » - 1/2 cos   9 - •j ^-—    , 

where these equations are parametric equations  for the  flow.    With this 

change of parameter,  the free surface  is now represented by real values of 

9, and the interior of the flow  is obtained by allowing 9 to range over 

certain complex domains which will be defined later.     The equations may be 

further simplified by employing the  identity cos  S - 1/2 (1 * cos 29)  and 

substituting A for 29.    We obtain 

(18) £« - 1/U  (fi+ sin/)  j 

(19) z - - l/h  (/f* slryf) - J (1 • coa^f) 

« - lA [/• i(l • e"V^)]   . 

The shape of the  free surface may be  found by seperating z  into  its real 

and imaginary partsj  this is possible on tns fres surface, sines /j is rsal 

there.    We obtain 

.     - • 
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(20) x * - l/H/3 + sin/jj)   , 

y - - lA ( 1 * coa/3 )   • 

These equations are easily recognized as the  parametric equations  for a 

cycloid. 

We must now carefully determine  just what  part of the cycloid represents 

the  free   surface.    Recall that /\ is restricted  to the range 0 < /i< l/2; 

consequently, since  /( " 1/2 cos 0,  this corresponds to some 0 interval of 

length   TT/2 which we may take to be the  interval 0 < 0 <   TT/2,  or  in terms of 

fy , 0 <A < TT.     For this range of/2  ,  equations  (20) will describe the 

half cycle of the cycloid between x e 0 and x » - 7T/U,  y varying from - 1/2 

to 0.    The continuation of this  free stream line  frony^1 0 to^ = - 77",  arises 

from taking the negative square root in equation (17).    The scpment of the 

real A -axis from 0 to 1/2 is hence traversed twice.    This corresponds to 

the segment of the "3 -axis lying betwean -   TT/h and   TT/U.    In order to 

investigate the flow further, we look for the image of the remaining part of 

the realj5 -axis.    This will be the continuation, as a fixed boundary, of 

the free-surface stream line.    It i3 no longer necessary to take A into 

consideration, since the parameter3 is all that is needed to connect z and 

^.    We see from equation  (18) that  the continuation of the  free surface as 

a  fixed boundary corresponds to a curve in the complex /i -plane alonr which 

I m  ("^)  =   Im i- l/U  (3* slnA) 'f will bs equal to zero and along which 

Re  J- J- l/U(A* sin A) L varies between -  co and -  TT/U and bet'-veen  7rA and 

*   co. 

Since we will need the curves for which Im('S )• constant, we will develop 

these curves new,and then we need only to set the constant equal to zero in 

order to obtain the equations for the continuation of the free surface. If, 

in equation (18), we set^ - 4 • i?7, we obtain 

pi—— 

• »• 
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L-n(^) - Im f-l/k (£ • tf}+ ?-!n|co3h^-* i cos£ sinhfl ) J. 

- - 1/U  (?1 + cos | sinh^)   . 

Setting our constant equal to - r   We obtain,  for the stream lines,  the 

relation 

7\* cos£ sinh?7« k  , 

whence 

In order to  find the  image of these  lines  in the z-plane, v;e use equation  (19) 

with ft - £ • i ?7 to obtain 

. ,i     »>..«.../. 77   -i £ \ ) z "* - x/u   i|» ifl» iu » B/ B      • n    , 

or 

-Uz - £ + e^7   sin£ • i(l •?)• e^ccsf)  . 

To write x and y as functions of a single parameter, ws may use equation (21) 
1 2"1 

together with the identity sin* - • 1|l-cos | , which yields 

For h very large, we see that x behaves asymptotically like el   and that 

y is asymptotic to Y). Consequently, for all values of k. including k * 0, 

the stream lines resemble, asymptotically, the logarithmic curve y " log x- 

The flow is illustrated in Figure 5. Stagnation points occur at the ends of 

the free surface where the cycloid meets the fixed boundary. The anjle here 
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is  2TT/3.    There- are many branches  to  this mapping*  hut the only one involving 

a free surface and locally positive pressure is  the one shown ir. Figure  3« 

It can best be  interpreted ai  •:,  flow     C water under  a "rcof" shaped  like the 

fixed  boun^arv.    in the break i" "he  "ccF*n the water drops down in  the form 

of a  cycloid. 

We  find the velocity by takir.y; the   'icnjugate of 

d~ 

~3F 
1? 

JL£2*A. - 1/2(1.  eV9)     , 

W: snee 

*?• 1 * e'^ccs £ r? e   ' si:: 

In crder to investigate the  :z\£.   bi-a.^ he;  of    '.    v-ipp' :.;;, 

lower FT  .    ;je 1 a-rs 

-ili'   • /« + -iin/3 * IT 
(/*- rr)-    (/g- 7T):" 
—*-»*)—. "• ' -J . T       •  •   •        . 

.;i SI 

2*} 

•yz    =/9*-(-i're    '   )  - ~ i  i -i-*—KT '—  t —£—s-; — -»   .. 

set U-yr|- 

= ^ *  i(I   r e 

*•    :•«    ma •-    -.rr->T<y    ' 

^l 

•hr   - TT « ;(/3- rr) CCC3) 

and 

If we let ^3 - TT * n 10' then 

*/ By f * 0(<* ) we Tear: that   | i|  < K|C*J , K = cc.stent,  for all  «  siffi:: 

near tc  zero. 
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•• 0(£U) 

Now the free surface and  its  continuations are the image of the lines 

Im(o)   = 0;     hence from 

0 = IraC;') - rm(-)i^-TT) = ^j. sin ?9» * 0(6 h)   , 

•   .      2 TT" 
we see that necessarily sin 39' =0, or 9' B 0, _* -*- , + —«— , ... . 

Consequently, we have 

_Uz -TT«i!£^rlf ,o(€3) 

= . r2 i29'  „,, 3x 
* i 2T e    *  v  ' 

r2 i(29' + TT/2)  „,, 3*     . B ilT/2 

Thus in the neighborhood of ^3* TT, that is, when € —» 0., the argument of 

-hz -TT, when z is tracing out a stream line, can assume the values ir/2, 7 n/6, 

and -TT/6. The branch corresponding tc TT/2 is the cyclcidal free surface, and 

the branch corresponding to - Tl/6 is the "reef." The third branch, cox-respond- 

ing to 7TT/6, yields a flow which, for positi-rs pressures, has no free surface 

at all. In order to see e-x-ictly what is happening near a branch point, it is 

sometimes convenient to follow a nsarby stream line. 

It is often halpf-ii to trace out various stream lines in the parameter 

plane by cor.-.pcsiticn of graphs. Fbr example., in this flow we are interested 

in the lines for which 

Im(-!4.S ) - 7) -r sinh lycos £  =  constant , A « £ + iy\   . 

Cne plots on the sama graph the iLr.es To -• constant 3.nd  the lines 

sinh TO cos f   « constant fcr equally spaced increments.  ]>.- joining the 

intersections where 7) + sinh Y) cos t   - constant, we construct the imaja; of 
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the stream lines,    Ji'igure U illustrates  this orocedure. 

For a  flow to be  physically realisable,    we must investigate the pressures 

involved in the  flow to make certain that they are  positive.     In order to 

do this we consider Bernoulli's law in the form 

constant - — • l/2 q    • Im(z) 

I 
If the  pressure is  to remain  positive as we  go deeper into the  flow region, 

the quantity l/2 o     • Ira(z) must become large and negative there.     In the 

case of this example, we have 

1/2  q2 - 1/8  (1 • 2e~ /   cos £ • e"2J )   , 

and 

Im(z) - y - -1/U (1 *f\ • e1] cos £ )   . 

The velocity term decreases to 1/8 quite rapidly as v/e go into the flow, 

since Vj  increases there (see Figure U). As long as y i3 negative, the pressure 

is positive, but if y is large and positive, then the pressure will become 

negative. The latter is true when we are near the -roof" and far out on 

either side; consequently, this flow is not physically realisable in the 

large. 
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Chapter IV 

As was mentioned in the introduction, one cannot hope to pick the one 

function A (^) which will solve the ocean-wave problem unless the class of 

functions under consideration is restricted considerably.  In this chapter, 

we will consider the influence that the problem of surface waves over a deep 

ocean has on the selection of the function A  ("-> )»    first we will show thst 

under certain assumptions, /{(->) must bs  a function which has singularities. 

Then the exact location of these singularities will be determined and the 

behavior of A. ("3 ) at the singularities will be found through the use of 

conformal mappings. We will gain enough knowledge about /.  ("5) to enable 

us to obtain a good approximation to the solution of the problem of waves 

over an infinitely deep ocean. An example is given illustrating the results 

of these considerations. 

In order to establish our theorems about the behavior of A("5), we must 

make an assumption concerning the physical flow. We assume that the waves 

are symmetric, in fact, that the whole flow is symmetric about the perpendicular 

line passed through the crest or trough of the wave. When one considers 

the fact that there are no external forces acting on the surface — such as 

wine--and that the water is frictionless for the purposes of this theory, 

this assumption of symmetry seems quite valid. A conseq\ience of this symmetry 

V is that within the frame work of this theory, all velocities are bounded 

and bounded away from zero. This does not mean that in the actual ocean 

%.\ zero velocities are not possible, for it must be kept in mind that our frame 

of reference is fixed with respect to the waves, not with respect to the water 

at great depth. Thus the fact that the velocity of the water is bounded 

away from zero means that in an actual ocean, the velocity of the water never 

iSSit. 

i 
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attains the velocity of propagation cf the wave.    This assumption appears, 

fron observation, to be valid as lore as the wa\re does not "break..•    The 

breaking of a wave apparently occurs uteri the velocity of the water at the 

*/ crest of the wave exceeds the Telocity of propagation of the wave*' 

The  fact that the velocity is bounded has -the sasae Meaning with respect 

K 

I 

i 

to either frame of reference. 

As  a result of our assuaption of svanetry, we can show not only that 

the velocity is bounded and bowmded away froaa aero in the satire flow region; 

we can determine the asymptotic     "tevelopnsTit of z   = z (z- ) near infinity as 

rail.    Suppose we consider the region in the s-plane bounded above by a half 

cycle of the free surface joining the trough to the crest of the nave, and 

on the sides by   the two sen-infinite vertical lines dropped from the trough 

and the crest of the wave.    These vertical lines are, as a consequence of 

o-jir assumption of syanetry, orthogonal to every stream line,  including the 

f«e surface • 

Since the flow function Sm 3(z)  is an analytic function, it yields 

a conforsal sapping;  tsenca the region defined above  in the z-plane saps into 

a region in the  3—plane which is bounded on top by the iiEage of the: free 

surface, that is, by a segment of the real  i-axis, and on the sides by 

lines that are everywhere orthogonal ta x.he images of the streac lines.    But. 

then these lines must also be vertical straight lines dropped from the ends 

of the segment of the real 3-axis that represents the half cycle of the 

free surface in the z-plane.    Hie shall call the region in the B—plane, and 

*/ —'Stckes has estimated that a wave will break when the ratio of wave height 
to wave; length approaches Ii7. 
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its image in the ~j-plane, a "cell" of ttie flow. 

We will locate the cell in the z-piane so that, the vertical line under 

the trough of the wave coincides with the negative imaginary axis from 

z «• - ib, b >  Oj to z • - ioo,. and the vertical line under the crest of the 

wave runs from z " dT| - ia, 0 < a <b, to z » dH- ioo. In the J -plane, 

the cell will be bounded by the segment of the real "5-axis joining the 

origin to the point "5 •» c"77, c > 0, and the two vertical lines dropped from 

these end points„ The origin in the 3 -plane shall correspond to the point 

z * - ib in the z-plane,, Figure $  on page 62 illustrates the cell as it 

appears in the z- and -J  -planes. 

We now map the cell into two new regions by the mappings w = e     and 

-i* 'c - v = e "LJ/^0     In the v-plane, the cell is mapped into  lh« region bounded by 

the semi-circle of radius  1 lying above tne real v-axis.   ind the segment of 

the real v-axis  joining v»-itov = *l.    The image of the  cell in the 

| w-plane will be bounded below by a segment of the real w-axis joining 

w = a1  to w = b',  - 1 < a1  < 0 < b"   < 1,  and above by a smooth arc leaving 
':. 

the real w-axis at w = a'   vertically upwards  and arriving at w = b!   vertically 

downwards, such that all points on the arc are less than unit distance from 

the origin.    The image of the cell in the v- and w-planes  is illustrated in 

*' Figure 6.    The  point at infinity in the z- and ^-planes has as its  image  the 

:~.: origin in the v- and w-planes,    The cell walls correspond to the segments 

ta. 
J|: of the real axes in the v- and w-planes. 

§P 
H If we consider the domains  in the  v- and w-planes as being connected 

by the mapping   ->-  ->(z), which we assume as known,  we see that w as a 

function of v is real on the real axis and consequently can be extended into 

the  lower half-plane by the Schwarz reflection principle.     3y the  same reasoning. 

i 
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we can extend v into  the lower half-plane„     These extended domains are the 

unit circle  in the  v-plane,  and a region bounded by a closed smooth arc in 

the w-plane containing the origin, but contained in the unit circle.     Thus 

through the mapping J •  "~>{z) we can connect these extended regions  in the 

V- and w-planes by an analytic  function w(v) which is  achllcht within the 

image of the cell,  and transforms the origin of the v-plane into the origin 

of the w-plane,  and the  positive direction of the real axis at  the origin 

in the v-plane into the positive direction of the real axis at the origin in 

the w-plane.    Since the mapping is  schlicht,  the derivative, -j— ,  is bounded 

and bounded away from zero within the image of the cell.    Furthermore,  the 

quantity — is  also bounded and bounded away from zero within the entire image 

of the cell, since at w = v - 0, 

w        dwj W   Jw=0 > 
w-»0 • 

dw 
and ve  know that -r— is bounded and bounded away from zero. But since 

W 
to 1     da    d v dw 
| -=T "dj "c w dv  . 

it is clear that provided c and d are finite and non-zero, the velocity, q, 

of the flow will also be bounded and bounded away from zero. 

The mapping function w(v) will have the form 

w •» a., v • a„ v •„. o, 

where a., is real and positive, and the series is convergent for v| < 1, If 

we replace w and v by e     and e     f respectively, we obtain 
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-iz/d     -13/c     -125/c i =  a1e  '  + a9e      + a,e     (1 T — e 
1 ax 

a_   .^>/ 
2 -xo/c     s 

Taking the logarithm of both sides, we find 

-1 \    = log (a, 3-1 #c) • log (1 • !S e-1^0  • ...) , 

whence 

(22) z " id log a + d^>  /
a2  -i^/c 

I c 

[• 

Finally, we have 

T 
dz _ d . d a2 ^. -ijf/c a . a  t. **    - 

" r • r r- 5 e * ., 

which shows that the velocity at infinity is -% . 

(7) 

Since velocity ** Gr=-), we may conclude that in the equation 

z'   (z'  • 2i   ^') ^T 

the quantity z1  •» l/-y-^"    is also bounded and bounded away from zero ir. the 

entire region of flo<v„    We can now show that the function  /?(^5) must have a 

singularity in the finite  part of the flow region of the -5-plane.    TTe 

'••till first show that < II *k N in this region for suitable constants 
M and N.  If ise solve equation (7) for /^', we obtain 

(23) d_2 
d 

1     z^ 
Uiz'^   21 

From the form of this equation, and the bound on z•   from above and below, 

we see that the right-hand side of the equation is bounded by some constant 

M as soon as A is bounded away from zero. But then 

! 
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I 

V. 
kl**fi 

<   M 1 • N, 

z« 
2i Kl 

N = constants 

in the region of the cell excluding 3ome circle about /i m 0. The inequality 

is obviously satisfied within the circle about /[ m 0. Consequently, /\ 

cannot increase any faster than j and is hence finite in the finite part of 

the flow region. 

Now for a flow in an infinitely deep ocean, the entire lower half of 

the ^5-plane maps into the flow region, and the entire real 3 -axis represents 

the free surface. Therefore A{j>)  is real along the entire real _; -axis 

and is defined and bounded by M ->]• N in the lower half of the 15-plane. 

As a consequence, according to Schwarz's reflection principle, we define 

^ ("5) in the entire upper naif-plane in a unique way by setting 

r- = A.  ("5") there. Thus A is defined and bounded by M 5 • N in the entire 

•"^-plane-  If we were to assume that "A ("5) were also regular in the entire 

J-plane, then by an extension of Liouville's theorem, ^ must have the form 

/!= AT *  B - A and B constant. 

But this choice of the lUnction /((*^) cannot yield a solution to the surface- 

wave problem, for it generates a free surface which is not even periodic. 

n 
Thus we must conclude that A canv.ot be regular within the region of fi.ow„ 

We will discuss the type and location of the singularities of /7(3) in more 

detail below. 

If ws again consider equation (23) and use the fact that z' is bounded, 

that if /i-  0, then necessarily /t' • co, that is, /<("5) is singular we see 

at the image of this  point.    Thus  if we t>re to  prevent any stagnation points 

from occurring in the  flow,  we must require that jr- -jr*r -°«*/*-o. 
i, 
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We now turn our attention to the  A-plane and try to construct the image 

of the cell there„     The  part of the boundary that corresponds to the  free 

surface is clearly a segment of the  positive real axis,  for we require /( ("5) 

to be real and  positive when *S belongs to the free-surface segment.     To find 

the remain   ig part of the cell, we return to  the differential equation (7). 

As we move along one of the vertical boundaries of the cell, dz  and dj are 

dz both pure  imaginary;  consequently,  along one of these  lines -JT- is real. 
d •* 

This implies,  in effect, that the velocity -rr-i   is real along the vertical 

wall of a cell.     If we write  I for known imaginary quantities and R,, R^,... 

for known real quantities,  then on the sides of the cell    equation  (?) 

takes the  form 

Rl <R2 * 2i ¥">  - 2X    ' 

or, since -y is real, we have 

R^ • R^ d /i  - -i£~r 

Thus it seems  that /r is real along the Avails of the cell.    That this  is the 

case is a consequence of the uniqueness    of the solution of equation  (?). 

If one starts  from either end of the free-surface segment and integrates 

down the side of a cell, one finds  that in determining the successive approxima- 

tions of Chapter I,   page ill, all quantities,  including the  initial values, 

are real so that necessarily X is also real along these vertical walls of the 

cell. 

Ws can show that our cell boundary in the  A— plane is  partially composed 

of the real /X-axis to the right of the  free-surface segment, and the real 

A-axis to the left of the free-surface segment up to the origin.    At the 

origin of the /{-plane we must have a  singularity,  for as we  found in the 
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discu&sion of the nun-regularity of  A,  it is necessary that -r-y " 0 at /(- 0. 

If we solve equation  (7)   for  /( ', we obtain 

As we move downwards on either sido of the cell,  we  have do  » id T,  d   j< 0, 

so that, since z1  and Xare positive near the free-surface  segments, the 

sign of d A agrees with that of ,4 »- .    But on these walls of the cells, the 
2z-< 

d ^   1 3 
velocity c^is real and equal to -r— » —j- i  consequently, the sign of d A agrees 

with that of /i- -&-  . As will be shown immediately, the velocity must decrease 

as we move uOmi the cell wall under the trough of the wave, and increase as 

we move down the cell wall under the crest of the wave. At the trough of the 

wave, ^' and hence d ^ are zero by virtue of the form of Bernoulli's law on 

1 2 Q 
the free surface, namely, — q » - y, and by the fact that /• = -y on the free 

surface. Thus A is stationary there,, On the other hand, q decreases as we 

leave the trough and proceed down the wall of the cell. Consequently, 

A - -t- becomes positive as we leave the trough,.  Thus d /t is positive and 

Ais increasing,, But if n is decreasi-r1,^ and f\ is increasing as we move down 

the wall of the cell, then d /I will remain positive  As a result, A must 

continue to increase until we reach a singularity.  The right-hand side of 

equation (2h) is regular along the wall of the cell below the trough of the 

wave, and hence there can be no singularity in A along the positive real axis 

to the right of the free-surface segment, with the exception of the point at 

infinity. Thus the wall of the cell below the trough of the wave maps into 

the real axi3 in the A-plane lying to the right of the point Am  b. 

Below the crest of the wave, just the reverse holds. Here q is increasing 

so that the quantity A \ - will change from zero to a negative quantity as 

i 
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•ve leave the crest of the wave and move downwards on the wall of the cell. 

Thus d A is negative and /i  is decreasing. Again, with / decreasing and q 

increasing, d/l remains negative and consequently A will continue to decrease, 

st a rate bounded away from zero, until we encounter a singularity in equation 
n 

(2U)0  This singularity occurs when f<.~  0„  Thus the segment of the real axis 

from A m  a to /im  0 corresponds to part of the cell wall below the image of 

the crest of the wave. This proves that A (~J ) nas a singularity corresponding 

to /!• 0 which occurs directly below the image of the crest of the wave in 

the 3 -plane. Since we know that necessarily Y-y~ "0 at /I *" 0, the image 

of the cell wall in the /(-plane must turn upwards at this point. We are 

unable to find the exact location of the cell wall beyond the point /»• 0, 

however.  If wo could find it, the problem or ocean waves would be virtually 

solved. 

We will investigate this image further after we have shown that q increases 

as we move down the cell wall below the crest of the wave, and decreases as 

we move down the cell wall below the trough of the wave. To show this, we 

must assume thai: the wave rises continuously from trough to crest. This is 

surely the case for a simple wave.  If we consider the vertical component of 

velocity, (D  , we see that it must be positive on the free-surface segment 

and, as a consequence of our assumption of symmetry, it is zero along the 

cell walls and at infinity. But y    is a harmonic function, and consequently 

it must assume its minimum on the boundary. Thus Y     ^ ° within the cello 

Furthermore, if a harmonic function assumes its minimum within a region, then 

it is necessarily constant. Consequently, (p    is actually positive within the ceil. 

If we move infinitesimally from the cell wall below the trough of the 

wave into the interior of the cell region, then'we are moving in the direction 
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of increasing x and increasing \     . Consequently, 'P      > 0 on this cell wall. 

Conversely, if on the cell wall below the crest of the wave, we move into 

the interior of the cell, we are moving in the direction of decreasing x 

and increasing r • Conseauently, &        < 0 on the cell wall below the crest ° ' y      -   Jy •  yx 
of the wave. But Y      - V    , so that @      > 0 on the cell wall below the yx       • xy> I   xy 

trough and   \      < 0 on the cell wall below the crest.    This  is  just our 

assertion that the velocity, which is equal to Y^ on the cell walls,  is 

decreasing as we move down the cell wall below the trough, and increasing as 

we move dumi the cell    -all below the crest of the wave, since when we are 

moving downwards, we are moving in the direction of decreasing y. 

Although we cannot find the exact image of the cell wall beyond A " 0 

in the   A -plane, we can assert that It must lie in the  first quadrant,  and 

must be an analytic arc.    We will show that,   in general, /f (~S)  is schlicht 

and  possesses no singularities within or on the boundary of the cell besides 

the one on the cell wall below   _>  «= c »i and the  one at _> "   oo which have already 

been mentioned.    We will consider "the mapping from the  z-plane to the /i-plane. 

Since the mapping from the z-plane to the 3-plane is  regular and schlicht 

in the entire region of flow, what we assert  for /1 = /\ (z)  is equally true 

for ?- /I(z(^))  = 2(5). 
If we multiply equation  (?) by the quantity A (j^O   > y,e obtain 

(25) ?**2&- -|(^)2 - 

d~^ C On the right-hand side of this equation, we replace -=—•   by Y     - i (f>    . 

On the left-hand side, we set r\ •>   /I    • ±  /{    and dz = rtx * idy.    we will 

consider the behavior of the imaginary part of equation (25*)  as we move 

vertically downwards in the z-plane, that is,  for dz • idy, dy < 0.    Under 
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this restriction,  the  imaginary part of the equation is 

(26) \^iy    lA*l-'   %   %> 

We have already seen that (f>    is  positive  in the  interior of the cell 

and on the free-surface segment.    We know from symmetry that (f     is zero on 

the walls of the cell;   consequently, since we have shown that the  velocity 

is bounded and bounded away from zero,   j     must have the 3aae sign on each 

wall of the cell as it has at infinity.    We have constructed our frame of 

reference so that   j    -* 0 at infinity, and hence     P    is positive all along 

each wall of the cell.    If we assume that the free surface does not have a 

vertical tangent,  then y      ^s also positive   along the free-surface segment. 

Consequently, j     is  positive on the boundary of the cell,  and hence, by the 

minimum principle  for harmonic  functions, Y     ^
S
  positive throughout the 

interior of the cell.    Therefore the  product   (P    CP   is  positive in the 

interior of the cell and on the free-surface  segment, and zero along the 

vertical walls of the eel]. 

Suppose now that we start from a  point on the  free surface in the z-plane 

and move downwards.    We wish to show that   A-,  and /i „ rsrcain positive on any 

such vertical line dropped from the free surface other than the walls of the 

cell.    From our construction of the image of the c>sll in the /i -plane, we 

know that A 9 is zero on tne free surface and that the region of flow lies 

above  the free-surface segment in the  /(-plane.,     If we write equation (26) 

in the form 

(27) ^    ^1^ --?<?*%*fy  > 

<P      <P we see that, since   r        r    is  positive throughout  bhe region of flow, and 

. 
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1 n 
since   /t    is  positive on the  free-surface segment and   /(„ becomes  positive 

as we leave the  free-surface segment end enter the  interior of the cell, 

the quantity -3—    ( A-\ /!„)  is negative as we start to move down a vertical 

line below the free surface in the z-plane.    Because we are moving in the 

direction of decreasing y,  this means that the  product  A-. A0 must be increasing. x    d 

Now   /{, > 0 on the  free surface;,  /\ _ = 0 on the free surface;  consequently, 

A \A? becomes  positive as we leave  the  free  surface.    As ?ong as A ? is 

positive,  equation (27)  shows  that /\ ,/t« will continue to increase.    Consequently, 
9 

we can assert that f\ 0  cannot be equal to zero in the interior of the cell, 

for if it were, then the quantity /, A„    would ha-ve to increase to zero 

through positive values, an impossibility. With ,':., positive, A-, A~  is 

constantly increasing so that we may conclude that. A    i.? also positive 

throughout the interior of the cell. Thus the image of the interior of the 

cell lies in the first quadrant, and /\ is non-zero in the interior of the cell. 

From the form of the differential equation(23), we see that /fcan have a 

singularity only at points where /\ = 0 or at infinxty. We have seen above 

that A cannot be zero in the interior of the cell? consequently, if A is also 

1 
finxte there, a fact tnat we have already established on page 50, then A 

must be regular in the interior of the cell. 

We have already seen that /I cannot be zero on the wall of the cell 

below the trough of the wave. We also found that A must be zero at a point 

S-\ on the wall of the cell below the crest of the wave* We will now show that 

/\ has only this one sero on this cell wall. As  was pointed out earlier, 

the miantitv V      'r is Z»TI all ^lor.r the Trails of the cell.  Tht 
% *   '  x ' y • - 

B 

start from the image of /f» 0 on the wall below the crest of the wave and 

move downwards in the z-plane, equation (27) assumes the form 
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We haye already established the fact that /I, and /<• p a*"e positive within 

the cell. Consequently, on the boundary of the cell f\1 >  0 and /(2 > 0. 

As we leave the image of Aw  0 in the z-plane and proceed downward. /I _ 

must assume positive values, for otherwise the cell boundary would double 

back on itself, and since the interior of the cell must lie to the right of 

the boundary, we would contradict the fact that A .  and /i„ are positive in 

the interior of the cell.  But if /[„  become? positive, then as seen before, 

the quantity A.   f\9  must be increasing. Consequently,/A cannot remain 

zero as we move away from the image of /( = 0 in the z-plane, but must also 

become positive. As long as /T? 1* positive, n -^ A ^  is increasing.  Thus 

A cannot be zero again along the wall of the eel"! below the image of A- 0. 

Even more is true, namely, if the quantity A, /tp is constantly increasing, 

then the image of the cell wall beyond /i=  0 must intersect every hyperbola 

A-,  /L = k from left to right. 

Since A-.   A?  is the imaginary part of /\   , ws see that the image of the 
• 

2 
cell wall in the   ^\    -plane is always rising.    Consequently, in the mapping 

"10 
from z to  A    or from -i> to  /»**, the points on the boundary of the cell map 

into each other in n one-to-one continuous manner.    But  if this  is  the case, 

*/ - the mapping is schlicht in the interior of the cell as well-*-' if the mappings 

from z  to A    and 5 to A    are schlicht, then so are the mappings from z to S\ 

and 3 to A . 

That /Wis bounded in the finite part of the 3-plane, and hence can 

-' See, fcr example, Titchmarsh, The Theory of Functions, Oxford, 1932, p. 201. 
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have no poles in the finite part of the  _>-plane,  is an immediate consequence 

of equation  (23), as was  pointed out earlier.     This  completes the proof that 

the  function  A (5) can have only one singularity in the finite part of the 

cell in the   J-plane,  and that it must have this singularity below the image 

of the crest of the wave.     Further, we have seen that /{ {~S )  is a schlicht 

function in the cell. 

We have already shown that /i < M   ~> • N for la~ge    values of /{. We 

will now show that /»becomes infinite like Jat miipTty.  j.f we multiply 

equation (2U) by 2i/(, ws obtain 

2 
- z' (- 

2z» 
2i-?v\' - i34- -•• (-^- -/I) • 

3 
At the trough of the wave, we have seen that /vis stationary ?r.d ohat the 

velocity decreases at" we move down the wall of the cell below the trough. 

As we move down this cell wall, do = id T, d j"< 0, so that /\ is increasing 

1       ? 1 if K- • -S- < /\there. As we have seen, this is indeed the case. If 
2z'~ 

/{     is increasing, so is /\, for /i is real and positive on the cell wall 

below the trough of the wave. With/1 increasing and -%- decreasing as we 

move down the call wall, we are assured of finding some positive constant 

~T2    ~ 

1L  such that 

i|4^ -•• (-i-r -A). 

or, since &Z - idY^, d Y< o, 

f$i -Mi for 

Consequently, 

b , 

3> b* 
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A2 - Ml N^ * M2  »    M2 = constant- 

Since   /becomes large and negat5.ve as we move down the cell wall, A becomes 

*f 1/2 large and positive with at least the order of 3   .If we write equation 

(7)  in the  form 

(28) aj <• • 2i 2 > - r^- 

wo   s«p   +.ha+. 

.•2J ^ o (\^\"l/2) ^ -ocl^l1/2) 

We have already seen by equation  (22)  that  for large values  of 3 

z -f3«0  (1)   } 

consequently, we may conclude that 

2i^.-|^*0(|^|1/2)   . 

By reinserting this estimate into equation  (28), we have that 

i(.  *2i   ^)  =0  (Kl"1)   , 

from which we may conclude that 

z • 2i M = u (IOP 13!) 
i < 

Thus near infinity 

/3- | z • 0 ( log 

*   P 
|) 

5) 0   (log 

Thus we find that not only does A become infinite at infinity, we see even 

the b«havior of the mapping near infinity.    The width of the cell in the 

/ 

- • 
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A -plane is just half the width of the cell in the z-plane as WR move off 

to  infinity.    Since the width of the cell in the z-plane is one-half wavelength, 

the width of the cell at  infinity in the A -plane  is £ wavelength. 

Finally,  we  shall establish the behavior of  A{~S)  at the image of  A"    0„ 

We  find that we must have a square root singularity  at the origin in  the A-plane, 

that  is, the  image of the cell wall turns vertically upwards there.    We 

start with the differential equation  (23), but write the right-hand side as 

a single fraction,    We obtain 

d 2     m 2iz'2/j- i 
"d-£ Ez7^ 

We now invert this differential equation and consider it as a differential 

 _XJ       *» *^T -        -*V »-- -**       <* W-      1 — c^uauiun   lux     ^j ao    a.    luu^uxun   wx    r v «        rt*3    uavo 

(»j if -^A— aA        2iz<   A - i 

where z' is considered as a known function of the dependent variable .5 . 

This differential equation is regular at /t » 0 and consequently will have 

a regular solution there of the form 

"S-30 • «x ^* 
a
2 '^ * • „ 

From equation  (29), we see that   ,  :?   « 0 at /T - 0, whence a,   = 0.    Also,   . 
^ n /*• 

has  a simple zero,  so a„ / 0.     Thus near A = 0 we have 

which proves that the singularity at A " 0 is a branch point of the first order. 

This concludes  our investigation of the  function A(S)  for the  problem 

of ocean waves over an infinitely deep ocean.    We have  found that in the 

.*>-,»,.,! 



/(-plane, the cell boundary is composed of the real   /i-axis and a curve which 

leaves  the origin of the   /(-plane  vertically upwards,  turns  immediately to 

the right and asymptotically parallels  the  positive real   A-axis at a distance 

above it equal to one-haIf the width of the cell in the z-plane„    W  ,h this 

information, we  are able to construct a  free-surface  flow which,  because oi 

our lack of knowledge of the  image of the cell wall beyond  Am 0,  is not the 

solution to the  problem of ocean waves,  but which does  yield a pood approxi- 

mation to the solution to this   problem. 

We are concerned only with the mapping connecting the   3- and/i-plane, 

for this will determine our choice  for the arbitrary function A (S).    We 

assume that the  ends  of the free-surface segment in the O - and /T-planes 

STQf rsspectivel^jO and c 77* ,  and a and b.    The cell boundary ir. these two 

planes is  illustrated in Figure  7,   page 62,    The singularity at  the origin 

of the  /^-plane  is of the order of \/?~. 

In order to determine the mapping function,  it  is more convenient to 

j rotate the   o-plane into a w-plane,  90    removed from the   i-plane,   by the 

mapping w » i *S „     Further, it is more convenient to  place the singularity 

sj corresponding to  A = 0 in the w-plane,  so  that we can map a  polygon in the 

I w-plana  into the real axis of the /(-plane.     Figure 8 then illustrates the 

j figures to be  joined.    We must map the real axis of the /(-plane  into a 

polygon in the w-plane thdt is composed of the real positive w-axis,  the  part 
i 

ij of the imaginary axis between the origin and the  point ic IT ,  the  line 

| joining icTT to a  point k • icTT ,  k > 0,  and a ray leaving the  point k •  icTT 

? in the negative real direction.    We will require the vertices  of tv?  polygon 

at the origin  and icTTto correspond to two  positive  points, b and a, b > a, 

on the real  /(-axis, respectively.     The  vertex at k • icTr will correspond 

i- •• :^ r ii .ir Mnwww 
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to the origin in the /(-plane.    A value for k cannot be assigned —  its value 

is  determined by a  and ti,and c. 

Since we ere mapping a  polygonal domain    onto the upper half-plane, wc 

may employ the Schwarz-Christoffel transformation.     The angles at the origin 

and at the  point icTT are both equal to  YT"/2„     The angle at k • icTT is 

equal to - 7T .    Thus the Schwarz-Christoffel transformation takes the  form 

W-AP  2 03-a)"1/2  tf-b)-1/2 d2   iB, 

where A and  3 are evaluated by the  point correspondence  A" b—>w = 0; 

A • a —>w - icTT .    We integrate the transformation and obtain 

w    = kf i(A- «)(/?- b)    • (a • b)  log  [\?,~ a    * fA~- b)  I * B 

The required point correspondence yields 

2c 
A -  ; r  , B = - c log (b - a) 

<b, whence, returning to J b} means of the relation 3= - iw, v*e have 

(30)      ~£»  - ^-4^  >j(^- a}(/^- b) - 2ic iog(\//\- a • >/A- b) -• ic log(b-a) 

. . 1C .-_-  p-a)(^b)' • log LJZz^iZ^bl! £ . 
a • b 

This  last equation,  or rather its  inverse,  is our choice for the arbitrary 

function  /1«= /iC5). 

We must now check if this  choice of the function  /((;$)  satisfies the 

necessary free-surface conditions,     The mapping itnolf takes care of the 

requirement that \ is  positive for 3 real.     That -x-x— >   }V '     on the free 

surface-segment can be verified directly.    We have 

.    ,i*.3»«ie.*fciii:Wi.->«, 
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(31) 

and, consequently. 

dl£    „      2ic /I 
d^ 3+b -(U-'a)'(^-b)1 i     > 

(32) ^-2 = (*f)2    ,    -(a^b)
2(^3)(^-b)    . 

«5 he    A 

Thus  the inequality p—=j— *    j1' becomes 

1      >       <«  *b)2  (/>-,)   (3-b) 

or,  since 0 < a  < /! *" b on the  free  surface, we have 

2>   (a •b)2  (?- a)   (L -j) 
c      _ 5-Jj 

-/^ 

The  right-hand side attains  its  maximum for A ~ tab  ,  where we must verify that 

2>    (a • b)2 (/fab1   - a)(b - jagj _    [(a • b)   ^-f?)]2 

2 Jib 2 

We will choose a • b » 1 and c  = 1 for reasons  to be given shortly.     Thus 

with this restriction on a and b,  the  free-surface condition is satisfied. 

To  find z as a function of A we must compute  (   O  )     and d^  as functions 

of /I .     The  first,  equation  (32),  has already been found in connection with 

•*»     d ^      o the free-surface  inequality.    From d ^ •=   , -   d A and equation (31),  we have 

d£   = . 2ci*dA_ 

Consequently, 

(a • b)   $J~- a)(^~ b)' 

/»    " rr r?1 

^27-- *' d^ 

-.   ill—— ..iiMu.i.^i^&steaatw. 



« _ i 1 . (a+b)2 (/^-a)(/jx-b) 
*7 ^j 

2c i 3 d/< 
(a*b)  /j(^-a)U-b) =T> 

(33) -i^.ij^—^U^  d^  (2-a)(;J-M 

From our form of Bernoulli's  law ard the  fact that  /( = - y on the free surface, 

we see that the velocity at the trough of the wave  (i.e., for/I - b)  is \2h 

and the velocity at the crest of the wave is J2a„     If we compute the 

quantity "q*     =   ~- = T^/HTT     
anc* ^a,ce i^s  limit as A—>co along the real 

axis, we obtain 

Hco   2 a • b 

Now it seems quite logical that if our flow is to represent a true physical 

flow, the velocity at infinity must be some intermediate value between the 

velocities at the crest and the trough of the wave. As it is not generally 

known what intermediate value should be taken, we will let the wave degenerate 

into a flat surface, and then equate the flow on the surface with the flow 

at infinity. Thus we set a = b and -obtain the relation 

/f2b - c 
"5b 

If we set c = 1, this is satisfied for b = -*  „ Consequently, in the case 

c = 1, if there is no wave at all, the velocities at infinity and at the 

free surface are equal if they are both equal to one.  It seems logical, 

then,to require the velocity at infinity to be equal to one when there are 

waves on the surface. Consequently,we set a • b * 1. With this restriction, 

• 
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the velocity at infinity becomes the mean square of the velocities at the 

crest and trough of the wave. 

We are now ready to conpile our formulas and compute the actual flow. 

We note that since the flow region is above the real A-axis, the arguments 

of *k-  b and \-  a.    change from zero to TT as we pass over the points b and 

a, respectively, from right to left.  Consequently^. VA- b becomes i vb - A 

as we descend past b, and v^. - a becomes iya - "X   as we descend past a. 

Therefore, the various branches of the mapping in the z-plane are 

x  

b 

b 
O * f \l (x+a)(x*b) z  « - i 1   *   V T^rf^- dx  , for a < A < b 

7A 

and 

b r 
/ \1 7" ~\ re  ~\    dx - 1 A - i j    V (x-a)(b~x) 
a A 

.  r j(«.»xx.b) „„-<*.< fJH(»b) to 
J V (a-x)(b-x;    » 

for 0 < Jl < a . 

By means of these formulas, we may compute z  for values of X along the real 

/-axis. This corresponds to computing z along the walls of the cell, up to 

the singularity at A = 0. The integrals can be reduced to the sum of an ele- 

mentary integral, an incomplete elliptic integral of the first kind, and an 

incomp r:te  elliptic integial of the third kind. Unfortunately, this latter 

integral cannot be found in tabulated form. It .;as necessary to compute these 

integrals by machine in order to learn anything about the flow.  The data that 

were computed yielded the shape of the free surface and the points of inter- 

section of the stream lines with perpendiculars dropped from the wave crest 

and wave troughs 

- .~J«fK>»' t*  in.tt««jmiWy.-. ~ 
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To find the points of intersection of the stream lines with the vertical 

cell walls in the z-plane, it is necessary to compute pairs of values of *\. — 

one less than a and the other greater than b — which yield the same value 

for the imaginary part of 3 - The two branches of the .function o = sCA) 

(equation (30)) to be used in this calculation are 

5 - - i {a4T >/T*- •><*- b) * log ^-\  :^)2   . for * > b, 

for 0 < ^ < a. 

The point in the ^ -plane that corresponds to ^ = 0 is hence 

2 
o = Tr 

^ a + b      b   b-a   J 

As the wave height diminishes, that is, as b - a—^ 0^ this singularity moves 

off to infinity like log r-  . A3 in the case of the trochoidal flow of 

Chapter II, the flow has^ in general, nc physical reality below the stream 

line that passes through the image of j\= 0 in the z-plane. Since 

-T-x- « 0 for *X ~ 0, we cannot invert z = z(^) into a function r\ -   *\ (z) 

in the neighborhood of ^\ - 0. Thus we cannot find the complex potential 

X = -CX(z)) in this region. 

It is interesting to note that the inversion of zC\) will always be 

impossible at ^ • 0 if we are to require that all velocities are bounded 

and bounded away from zero. Recall that at ^ = 0, we require -jir- = 0 if 

the velocity is to be Dounded away from zero. In order to be able to in- 

vert z = zC\ ) at  A * 0= we must have -nr- t  0 at *A = 0.  But then 

i ii • ini>wp 11 jjiin' i i»ii» ' »* 
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- _    dT 
q dz 

33 

•which contradicts the fact that the velocity is bounded away from zero. 

In the example of this chapter, the velocity at 0, " 0 is equal tc 2 fib". 

For the actual computation, a wav* height of .2 was chosen,  so that 

a • .U and b » .6. The results of the numerical integration can be found 

in Tables 5 and 6, and the resulting flow is illustrated in Figure ° on 

P3^® 6°•  This wave is a slightly bettor approximation for shallow water 

waves than was the trochoidal wave of Chapter II.  In the case of the 

trochoidal wave, the stream line through the singularity at /\ - 0 had 

a "wave height" of .0585 units when the surface wave had a wave height 

of .2 units. The corresponding figure for the example of this chapter 

is  .oUi units.  The wave length and depth are approximately the same for 

the two flows. 

It is interesting to note that the wave heights  (Ay of Tabla 5) 

of the individual stream lines do not decrease monotonically as we move 

down away from the free surface, but exhibit a small oscillatory behavior. 

This might indicate that the velocity of the wave should be chosen slightly 

differently. On the other hand,  it might ba that if one could accentuate 

this oscillatory action, one could obtain a flat bottom at the minimum of 

the first oscillation, thus obtaining the exact form of waves over shallow 

water. 

If in equation (33)    we were to choose a value of c that would make 

the numerator a perfect square (cd - ^ [VT*/b]   [a • b]), then the 

resulting flow is the trochoidal flow of Chapter II.  This trochoidal flow 

has the pro^rty that the velocity at infinity is independent of the wave 

height, if we hold the wavelength constant. 
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Chapter V 

Wo turn our attention to flows that are non-periodic in nature and 

which have vertical fixed boundaries that are infinite in extent. The 

vertical fixed boundaries are obtained by forcing the continuation of 

the free surface to be vertical. If we again consider the differential 

equation 

(7) z      (a'* • 2 iA') '-j^-, 

we can determine, to some extent, what type of function A (S) must bs 

chosen. Since we are considering a vertical line, dz is pure Imaginary, 

and since this line is an extension o." the free-surface boundary, we are 

on the real 3 -axis, and d5 is real. Thus, substituting the symbols 

R.j, R-3 R- for real quantities and 1. I~  for pure imaginary quantities, 

equation (7) takes the form 

h  u2  ^l 5^ ' TJC     * 
or 

H2 • R3da - ^- 

on ihs vertical fixed boundary. Consequently, if we start from the free 

surface, where A and -5 are real, and integrate along the real vertical 

fixed boundary, the solution A.   (3) must be real by virtue of the fact 

that the coefficients of the differential equation for A.  are real. This 

is the only possible choice of A.  (^), since the solution of equation 

(7) with prescribed initial data is unique. Thus we must choose' real 

functions for A (^). Furthermore, if we consider the equation 

(3) z - - iA *f // -i- -A '   d5 , 

we see that the vertical fixed boundary extension of the free surface will 
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1     1  ' 2 
occur when -v    - A is negative, and "ill be infinite in extent 

")        ^      /        i -\ » z 

if either^,   or I    y~   -s-^r-    *n d3     becomes  infinite for som« value 

of 3 on the extension of the free surface. 

From the standpoint of conformal mappin,;, we see that we must require 

the lower half of the J> -plane to map into a portion of the A -plane that 

is bounded b-" part or all of the real A -axis. That is,  the real o -axis 

must map into  part or all of the real IK -axis,     If there are nc singular- 

ities on the free surface or its extension  then we must map the half-plane 

into the half-plane, and the most elementary mapping that accomplishes this 

is the mapping A  (3)  "J   •     If we are to have a singularity on the real 

^5 -axis,  it should correspond to A • 0,  since the differential equation  (?) 

has a singularity at this  point.    If we wish the entire ^5 -axis to map into 

a part of the real A -axis, ws must have a square root singularity at the 

origin so that the real negative o -axis is doubled back onto the real 

positive A -axis.    Thus we can use the function A. (o )  = -3        . 

If we seta  m.J   , equation (8)  takes the simple  form 

z - - ±$ •f J-^r -1 <*£ . 

A good deal of information about the flow can be obtained directly from 

this equation without going into the computation, W« see that for large 

positive .5 , the integrand, y -a  - 1, is pure imaginary, so that we 

are on a vertical fixed boundary. As o ranges from 1/2 to 0 we mows 

along the free surface. Since the integral involves the square root of 

the inverse of 3 , it will be convergent and consequently x will move a 

finite disxanue as 5 traverses the interval from 1/2 to 0. During this 

time, y will decrease from l/2 to 0. When 3 is negative, we are again 

* i - ***.«b*Bl 



on a fixed boundary. Thus it appears that the flow involves two separate 

vertical fixed boundaries with a frsf. surface joining them. 

As the computation unfolds, wo  obtain first a semi-fountain in two 

dimensions. It involves a fixed vertical wall with a flow which moves 

up the wall, departs from the wall at right angles into a cycloidal free 

surface which meets another wall tangentially, and finally descends down 

this latter wall. This flow is illustrated in Figure 10, page 7U. If 

this flow is reflected about the higher wall, we obtain a two-dimensional 

symmetric fountain. After we have reflected, we may,of course,remove the 

center wall so that the free surface becomes a complete cycloid. Figure 11 

illustrates this reflected flow. 

It was mentioned in Chapter I that under certain circumstances we 

could have a stagnation point on a free surface wheire the characteristic 

2TT 
angle of —^-    did not occur. Figure 11 shows an example of such a flow. 

The center of the cycloidal free surface is a stagnation point on a fre« 

surface where the free surface has a continuously turning tkngnui. 

By choosing another branch of the parameter plane, we obtain a flow 

which occurs in the region of the z-plane which was not included in the 

above flows. This exterior flow is, in fact, the analytic continuation 

of the previous interior flow across the free-surface boundary. It comes 

down uniformly from • 00 along a vertical fixed boundary, and upon meeting 

an air bubble which is maintained in a slot, separates from the fixed 

boundary, forming a cycloidal free surface with the air bubble and finally 

flowing off bo - 00 along a vertical fixed boundary displaced horizontally 

from the original fixed boundary. 
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This flow is illustrated in Figure 12. Figure 13 is the reflection 

of this flow with the center wall removed. If we consider ourselves fixed 

with respect to the outer flow at infinity, we obtain a representation of 

one fluid mass rising into another. The free surface now becomes the 

interface between the two fluid masses, 

This latter interpretation might be cf interest to meteorologists, 

for one finds such phenomena in the atmosphere, 'when an air mass, which 

for this example should be long compared to its width, is heated near the 

ground, it breaks away from the ground and rises into the cool surrounding 

air. Of course, in the actual physical occurrence, a wake is formed along 

the outside edges of the rising air. However, if we idealize the wake by 

placing partitions in the air which rise with it so that no turbulence is 

formed on the sides, then the occurrence is described by the example of 

this chapter. Figure lU illustrates this flow. 

Davis and Taylor [l] have investigated the mechanics of large bubbles 

rising through extended liquids using an approximate theory. Also Taylor 

[12] investigated the instability of liquid surfaces when accelerated 

perpendicular to their planes. 

To develop the mathematics of the flow, we return to the equation 

developed for z, 

z -rf.r/^T*. 
-^  1   2 

and we make the substitution o = •*• cos ©. Therefore i 

do - - cos 9 sin 9 dQ , 

, 
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so that 

1   2 
Z • - i «• cos fl - / tan 9 cos 9 sin 9 dS 

1   2 a - *• cos 9 

/ 

- / sin 9 d9 

i   2 .  9  sin 29 - - ? cos 9 - ? * —JJ— . 

This can be written in a neater form if we use the trigonometric identity 

2cos 9 * 1 • cos 29. We have for the parametric equations of the flow. 

(3h) "$ m  1/U(i + cos 29), 

z - l/li( - 29 t sin 2G) - Ul  •*• cos 29). 

The free surface is obtained by taking 9 real so that its parametric 

equations are 

x = l/k{-  29 t  sin 29), 

y = - lA(l + cos 29). 

These equations are easily recognized as these of a cycloid. 

Going into the complex 9-plane, we have, setting 9 = £ + i in  , 

5 = l/)i[l f cos(2 \   ti?w)j 

- l/li(l t cos  2 £  cosh 2lj   - i  sin 2£ sixth 2 7)), 

so that 

Im( t)  - - lA sin 2 £ sinh 2 7)  . 

The stream lines are thus obtained for 

lA sin 2lj   sinh 2 7; = c, 

or 

sin 2 £ 
sinh 2 7)   ' k = i yc. 

/    . • 
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On the free surface P  and 77 must satisfy the equation 

sin 2 £ sinh 2 7)  = 0. 

The actual free surface is obtained by taking yn « 0, £ arbitrary. The 

continuation of the free surface as a fixed boundary is obtained by taking 

2 £ * n IT and 71 arbitrary. We can discover where the images of these 

lines are upon computing z for complex values of 9. We have 

z = - l/h[i • i cos 29 + 29 - sin 29] 

c - l/)i[29 + i + i(cos 29 * i sin 29)] 

= - 1/U(29 + i + i e-'ri). 

Upon setting 9 = f *  i 7) ,  this becomes 

z = - 1/U[2^ • 2i<r> • i 1- i e2l(* + ^>] 

_ ,  -277    . -   -??? 
= - I/UK ^ + <a?p + i t  i e  ' cos i?£ - e  ' sin 2 $ }, 

so that we have 

x = - l/ll(2|- e~29 sin 2£), 

y = - l/li(l + 2y  + e~21?  cos 2£). 

V#e see that the fixed boundary continuations of the free surface are of two 

types. For £ = nTT and tj  arbitrary, the fixed boundaries are lines drop- 

ping vertically downwards from the ends of the cycloidal domes. For 

£ = n-=- the continuations are vertical lines passing through the tops of 

the cycloidal domes. In any application * only one dome or even just a 

half-dome is used;  howevar, due to the periodic nature of the equations, 

there are an infinite number of possible domes spaced along the x-axis. 

Figure 15 on page 77 shows the two branches of the parameter plane cf 9 

which yield the internal and external flows. Table 7 contains the results of 

the computation for the free surface* whilo Table 8 contains the values of 2f 

and 2Yi   together with the corresponding images of x and y used to find the 

stream lines k - k 



„77- 

29 -plans 

—t-fr 2 | 

Figure l£ 

The first quadrant yields the internal flow and 

the third quadrant yields the external flew. 

. . 
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We may obtain the velocity expression from the relation 

VdQ / 

?-/3^ .^ 

•6.9 

From equation (3h) we have 

d* 1 

whence 

q 

r»z     ]   1        i 
d9~ = " f * 1  COS 29 * 7 Sin 29' 

 -sin 29" = sin 29" (1 - cos 29) - i sin 29 

cos 2B - 1 - i sin 29 2 = 2 cos 2§" 

o 9 — —   
If we use the identity sin 29 - 1 - ccs 29 * (1 - cos 25)(1 * cos 29), this 

simplifies to 

"q * | [sin 29" - i(l +  cos 29) j = - | (1 * e1 2"). 

Finally, inserting for 29" the quantity 2 £ - i2 7)  , we have 

q*=^ e2)? sin 2^ - | (i • e2?? cos 2 *• ). 

It can be seen from this expression that the arrows shown on the stream 

lines in Figures 10 and 12 are correct. 

As "is mentioned in the beginning of this chapter, another possible 

choice for the arbitrary function /\(^5) is the quantity O ' . With 

this function, we obtain a relation which represents the flow past a 

semi-infinite, thin}vertical obstacle. On the down stream cr right-hand 

side of the obstacle, a free surface is formed which leaves the obstacla 

tangentially, but quickly turns in the direction of flow. On the upstream 

side of the obstacle^, the flow parts at a stagnation point occuring » short 

— JjlMrWIlT—       '•' ..'•*--#>***>»»***•'•-•<• 
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way up the obstacle with the upper part of the flow passing off to infinity 

in the vertical direction. This example, rrhich is shown in Figure 16 on 

page 80, is not physically significant in the large, for the free surface 

continues to drop as we go away from the obstacle, so that very large 

velocities occur at points far removed from the origin. Furthermore, on 

the upstream side of the obstruction we must either impose a fixed boundary, 

or allow negative pressures and an infinite piling-up of the water in front 

of the obstacle. If, however, we consider only the local properties cf the 

mathematical flow, we can expect to obtain a fairly good representation 

of an actual physical occurrence. In this example, the best physical 

picture seems to be the high-speed skimming of the ocean surface by a long, 

thin,vertical obstacle. Our coordinate system, however, has been chosen 

so that, mathematically, we are riding with the obstacle and the ocean is 

flowing past us. 

In this example it is more convenient to join z and^ through the 

parameter A . From A -J  ' , we havej^ "A }  so tha -j 

d£ - 2A dA , 

and 

dA   _ 1 

whence 

dS   -27T> 

2 
1 \ )2 

We substitute these quantities into equation (8) and obtain 

z - - iA •Cy/I^IT ( -^-)212A dA 

- - 1A   *f "^A   -Td^ 

._ a • (2A - D
3
/2. 
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^-plane 
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Figure 17 

The fourth quadrant yields the lover part of the flow. 

. » ..1 U*-M 
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Thi» behavior of the free stream line and the fixed boundary 

extension of the free stream line are now apparent. For ^X > 1/2 we 

are on the free surface which extends to infinity toward the right. 

For ~h < 1/2 we are on the fixed vertical boundary, which also extends 

to infinity, but does so vertically upwards. The point A • 0 is a 

branch point of the mapping and we can expect the image of this point 

on the vertical fixed boundary to be a stagnation point where the stream 

lines separate. 

The exact behavior of the flow, however, can be determined only 

through calculation. We have j • f\    ,  so that if we let A • %  • iW , 

we obtain, for the images of the stream linos, the relation 

xi!H,r / " ^<y = constant. 

These are, of course, equilateral hyperbolas with the coordinate axes as 

asymptotes, as illustrated in Figure 17.  If we set the constant equal 

to zero, we find that the free surface, together with all its possible 

extensions, is the image of the P-  and Y)-axes. 

The most interesting part of the flow is obtained by considering 

the fourth quadrant of the "~K -plane. As has already been pointed out, 

the actual free surface is the image of that part of the real A-axis 

for which £ > l/2, since there tne free-surface condition 

1    1  '2 ^ «  ...   1^1 A       > 0, or > 
2(i 2% (2|)2 

is satisfied.    The free surface is hence given paranetrically by the 

equations , i0 
x = 1/3 (2 ^ - iy/d, 

y= - % > %t'^2 - 

-=5ssssss 
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i 

2/-5 
Thus the free surface resembles tht curve y • x  . 

In order to stay within the region cf flow (the fourth quadrant), 

we must pass below the branch point at £ • 1/2; consequently^the argument 

of ?.A   -  1 will change from zero td -77". Thus the argument of (2 A - ly> 

changes from zero to - 3TT/2, so that 

(2A-1)3/2 -i (i-2^)3/2, 

for 0 < r\ < 1/2. This part of the extension of the free surface as  a 

fixed boundary is therefore the segment of the y-axis from y " - l/2 to y «* l/3. 

The point J\m  0 is a branch point in the mapping.  If we were to con- 

tinue in the direction of the negative real ^-axis, we would continue, in 

the z-plane, to rove up the vertical fixed boundary. However, to stay in 

the branch cf the mapping within the fourth quadrant of the f\ -plane, we 

must turn at this point and move down the negative 77-axi.:. '.Ve set 

and obtain A = ±t2 

-t2* 
o    -a A 

(i • 2if-r' 

This  is  the stream line  that meets  the vertical fixed boundary at  a 

stagnation point.    A3 this  particular line  is  of interest, we will obtain 

its parametric equations.    Let us call it  the KzeroM stream line. 
9 i«C The argument of 1 • 2it"  = r e is between zero and   7T/2 and is 

given by cA = arctan 2t  .     In terns of  c<,  r and t, we may write 

3  „ ? OC   + cm    —( 
2 t2  • ^ r"2  < ,t   :,   -Of. *   i  sin  -^oC)    , 

whence 
t2-5^.11,3^    f 

1    2/2 2 & -r r '     cos - °< . 

; -• 
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Employing the identities 

c_„  3  ^  _  /„ „     -,N    /I  * COS =>C x os 2 oc =  (2cc3 <*. . 1)     r ^ co"^)^ ' §     (0<oc < TO . 

sin |   oc =  (2cos oc • 1)     (1 - c081*-)1/2,     (o<<x<f*) 

and the  relations 

cos ©v. • - ,  t    = ^ (r    _1) >   (r > 1 ) 

we obtain 

x -  - J (r2 - l)V2 . 1 r3/2    2. 1}   (111)1/2. 

1   • i 
1    3/2  ,2      ^   /      r^l/2 ,    ^ ,» 

or, upon simplification, 

X--(£^1)V2    [(l^Zjl/2 ,l(2.r)]f 

1 ,„        x   /l • r>l/2        /    _   -.» y « ^ (2 - r)  (    g    ) '   ,      (r > 1). 

The derivative assumes the simple form 

dx 

This further extension of the free surface accordingly leaves the y-axis 

at right angles in the negative x direction, turns immediately downwards 

and finally has asymptotically che slope +1. 

If we look for the flow above thi3 "zero" stream line we must consider 

the third quadrant in the *X-plane.  The images of the stream lines here 

correspond to choosing positive constants for the imaginary part oi   £; 

consequently, we will soor. run into negative pressures if we stray far from 

the "zero" stream line. 
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Considering again the lines  IraC/")  = 0,  but dwelling now in the 

third quadrant of the   A -plane, we first retrace our steps up the  f0-?.x±s, 

In the z-plane we are of course coming back up th    "zero" stream line, 

only now we are or. top of it.    When we reach t*      origin in the  /\ -plane, 

•'i». turn and run out the negative real axis.    Thos  T0 = 0, £j  • - p    and 

w® have 0      . o ->lo 
z - ip" + § i (1 + 2p)j/. 

fPL4 —     -:—    XL ~ x     - £*   x' : —     -1 ^    --    „    i   /*5 xiu.o   xo   ouo   pax o   i.'x    uj;c   j—a.j'.A.a   duuvs   y   =   x/^.-. 
J 

The picture of the  flew now becomes  clear.    The fluid flows up from 

the left at an angle of approximately h$  , strikes a  plate obstacle Trhich 

separates the flow into a part which goes upward, and a part which flows 

downward and soon separates  from the plate into a free-surface wake.  The 

j   . stagnation point where the flow divides  is the  point where the  "zero* 

stream line meets the y-axis. 

: Turning to the velocity, we use 

j dj   = 2y*d^   , 

dz - (- i •   y2A   - 1} d/\ 

».• 

q»    q,   • iq2 =  >'$) 

2T 

-. i • ffff-l1 • 
On the  free s'irface, t , 

q.,   - Ife J   - I, | > 1/2 
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On the vertical segment from y - - 1/2 to y - 1/3, 

qx - o, 

q2 - - 1 * /l - 2jf'  , 0 < £ < 1/2. 

Finally along the "zero" strear.   line we have 

qi " (_T~}     » 

T   * 'r • iq/2 
q, - - 1 • (—5—)       > 

where this r is equal to the r used in the parametric representation 

of the  "zero" strear.: line. Along + he  vertical segment from y » l/3 to 

y • •  00 we can use the relations developed for the lower segment, 

t _. 
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Table 1 

Fbints on the free surface for the trochoidal flow. 

1                i_                        9          1 
x • - £ • sin £   )      y " - TT *      cos I 

S 

; J 

0 

.10 

.20 

.50 

.75 

1.00 

1.25 

rr/2 
1.75 

2.00 

2.25 

2.50 

2.75 

2.90 

3.00 

TT 

3.30 

3.50 

3.75 

U.oo 
l.5o 
5.oo 
5-50 

2TT 

-x 

0 

.065 

.129 

.330 

.510 

.703 

.9lU 

1.22 

1.U0 

i.66 

1.97 

2.29 

2.62 

2.62 

2.95 

3.1U 

3.36 

3.62 

3.95 

U.27 

U.85 
5.3L 
5.75 
6.28 

-y 
.210 

.213 

.217 

.252 

.305 

.372 

.U50 

.563 

.627 

.711 

.786 

.8U6 

.888 

.906 

.913 

.917 

.913 

.895 

.853 

,793 

.637 

.U60 

.312 

.210 

Mr 



Table 2 

Points on the'stream line k • .25 for the trochoidal flow. 

*- cos /l.l25y- .25).     .    fc 
*dre^sin^; y--7-I5* 2V2~ 

e ' cos£ 

*•••: 

.1363 

.1365 

.137 

.lU 

.15 

.17 

.2 

.3 

,U 

..5 

.6 

.65 

.67 

.69 

.695 

5 -X -y 

7T 77" l.ioU 

3.05 3.01U 1.103 

2.98 2.92 1.100 

2.76 2.61 1.080 

2.UU 2.18 1.026 

2.08 1.71 .936 

1.7U5 1.32 .839 

1.15 .711* .669 

.81 .U2 .599 

.56 .^5 .568 

.335 .123 .55U 

.215 .06U .551 

.16 .050 .550 

.07 .021 r-'i. r-» 

0 0 .5^9 

•3 fSSMHBE?   -•        •*•    '•'      " " 



Table 3 

I 

Values of "W and ^2 together with Ay, 2b, %  smoothing and 

wave height; wave length ratio. 

v2 
1}    - - log lV? * %-   ^?2 "7l * 72— » ** ' be        4"72 • 

X "f 1 
b * i b    * 1 

n    _   o« 2b  -Av     ._« , .._,.. 
% smoothing - —2b 1UU5    TOVe xenfev'" ~ <-"• 

b "?1 V2 
Ay 2b %  smoothing ratio 

U .916 .1136 .6U57 .8 19.3 1:8 

3 1.20U .237U .1*138 .6 31.0 1:10 

2 1.609 .U90 .2075 .1* U8.1 1:16 

15 1.697 .VlU .1233 .3 59.0 1:21 

.1 2.303 1.07 .0585 .2 70 1:31 

.05 2,996 1.73 .0160 .1 8U 1:62 

.02? 3.6889 2.1)135 .00393 .05 92 1:125 



Table U 

Depth 

- yb " - y value of bottom below trough - ~^2 *  5—"" * 
be 

• -    ' b2 * 3       K - y    • - v v?ilue of surface at -crougn - —*  • b 
3 

depth • y    - y, s        0 

b -yb 

.U 1.1U17 

.3 1.1628 

.2 1.336 

.15 1.532 

.1 1.56? 

.05 2.513 

.025 3.193 

-v* depth 

.98 .1617 

.8U5 .3178 

.72 .616 

.661 .871 

.605 1.262 

.551 1.962 

.525 2.665 

•'  • 



Table 5 

Intersections of the stream lines with the walls of the cell. 

^ < .h        A  > .6 -Im(lp   -y trough -y crest & y 

,h .6 G        .6 .U .2 

.395 .60219 .2508     .831 .677 .15U 

.38 .6080 .U897 I.0U9 .936 .113 

.36 .6158 .6711 1.223 1.126 .095 

.3U .622U .7972 1.3U3 1.260 .083 

.32 .6280 .8936 l,U3l 1.360 .071 

.30 .6335 .9706 1.515 l.UUo .075 

.28 .6385 1.0335 1.593 l.5o5 .088 

.26 .61*20 1.086li 1.62U 1.563 .061 

p                         ,2U .6U50 1.129U 1.653 1.60U .0U9 

.20 .6510 1.1971 1.728 1.673 .055 

.16 ,6560 I.2U16 1.783 1.722 .061 

.12 .658k 1.2772 1.798 1.755 .0U3 

.08 ,6602 1.2979 1.827 1.776 .051 

.Oil .6607 1.3092 1.832 1.788 .oUU 

1^           0 .6611 1.3126 1.835 1.791 .OUU 

-:•• • 

1 



Table 6 

ftilrs of values on the free surface,. 

0 

.3U8 

.70? 

l.OOli 

1.2U7 

1.1462 

1.665 

1,863 

2.066 

2.285 

2.5U7 

2.8U2 

3.127 

-y 

.6 

.58 

.56 

.5U 

.52 

.50 

,U8 

.1*6 

.Id* 

M 

.Uo5 

,U 



Table 7 

ft>ints on a cycloid. 

Ux - - 20 * sin 20 

Uy " - 1 - cos 20 

0 < 20 <*TT 

£U -*«c -u> 

0 0 2.0 

.3 .ooU 1.96 

.5 .02 1.8« 

1.0 .16 1.5U 

1*57 .57 1.0 

2.1U 1.30 .1*6 

2.6U 2.16 .12 

2..8U 2.5U .Oh 

3.lii 3.1U 0 



Table 8 

?lj   and 2^   such that sin 2£ sinh 2f  « ^ and corresponding 

I4X and i4y. 

Ux - - 2f   • e"27 air 2$   5    U..  - » 1 - 2J?- o"27 cos 2£ 

«. 

2S 2? 

3.1U •00 

3.0U 2.31 

2.8U 1.28 

2.6U .91 

2.lU .56 
1.67 .U9 
1.57 .U8 
1.1*7 •U9 
1.0 .56 

.5 .91 

.3 1.28 

.1 2.31 

-.1 -2.31 

-.3 -1.28 

-.5 -.91 

-1.0 -.56 

-1.U7 ~.k9 

-1.57 -.U8 

-1.67 ~.h9 

~2.lU -.56 

-2.6U -.91 

-2.8U -1,28 

-3.0U -2.31 

Ux Uy 

3.lU -    CO 

3.03 -3.21 

2.76 -2.01 

2.U5 -1.56 

1.66 -1,25 

1.06 -1.U3 

.95 -1.U8 

.36 -1.55 

• .52 -1.87 

• .31 -2.26 

• .22 -2.55 

• .09 -3.U1 

• .91 -8.7U 

• .78 -3.18 

• .69 -2.27 

• .1*7 -1.39 

• .15 -.67 

• .05 -.52 

.05 -.35 

.67 

1.U5 2.09 

1.76 3.7U 

2.03 11.36 

SBH && 
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